分析 根據(jù)CG=x,矩形CGPH面積為f(x),作EN⊥PH于點(diǎn)N,因?yàn)槿切蜛EF∽三角形PEN,得到對(duì)應(yīng)邊成比例得到EN,用160-EN得到HC,然后利用矩形的面積求法,長(zhǎng)乘以寬得到y(tǒng)與x的函數(shù)關(guān)系式,最后利用基本不等式求出最大值即可.
解答 解:(1)如圖示:
CG=x,矩形CGPH面積為f(x),
作EN⊥PH于點(diǎn)N,則 $\frac{EN}{40}$=$\frac{x-140}{60}$⇒EN=$\frac{2x-280}{3}$,
∴HC=160-$\frac{2x-280}{3}$=$\frac{760-2x}{3}$,
∴f(x)=x•$\frac{760-2x}{3}$=$\frac{1}{6}$•2x(760-2x),(140<x<200);
(2)由(1)得:f(x)=x•$\frac{760-2x}{3}$=$\frac{1}{6}$•2x(760-2x)≤$\frac{1}{2}$($\frac{760}{2}$)2=$\frac{72200}{3}$,
當(dāng)2x=760-2x⇒x=190(m)即CG長(zhǎng)為190m時(shí),最大面積為 $\frac{72200}{3}$(m2).
點(diǎn)評(píng) 考查學(xué)生會(huì)根據(jù)實(shí)際問(wèn)題選擇合適的函數(shù)類型來(lái)解決實(shí)際問(wèn)題,理解函數(shù)的最值及其幾何意義.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\frac{13}{2}$ | C. | 12 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $g(x)=\frac{3-2x}{x}$ | B. | $g(x)=\frac{2-x}{1+x}$ | C. | $g(x)=\frac{1-x}{2+x}$ | D. | $g(x)=\frac{3}{2+x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{15}}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com