8.學(xué)業(yè)水平考試(滿分為100分)中,成績在[80,100]為A等,在[60,80)為B等,在[40,60)為C等,不到40分為D等.某校高二年級(jí)共有1200名學(xué)生,其中男生720名,女生480名,該校組織了一次物理學(xué)業(yè)水平模擬考試.為研究這次物理考試成績?yōu)锳等是否與性別有關(guān),現(xiàn)按性別采用分層抽樣抽取100名學(xué)生的成績,按從低到高分成[30,40),[40,50),[60,70),[70,80),[80,90),[90,100]七組,并繪制成如圖所示的頻率分布直方圖.
(1)估計(jì)該校高二年級(jí)學(xué)生在物理學(xué)業(yè)水平考試中,成績?yōu)镈等的人數(shù);
(2)請你根據(jù)已知條件將下列2×2列聯(lián)表補(bǔ)充完整,并判斷是否有90%的把握認(rèn)為“該校高二年級(jí)學(xué)生在本次考試中物理成績?yōu)锳等與性別有關(guān)”?
物理成績?yōu)锳等物理成績不為A等合計(jì)
男生a=14b=46
女生c=6d=34
合計(jì)n=100
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
附:
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

分析 (1)利用頻率分布直方圖中的數(shù)據(jù),求出成績?yōu)镈等的概率,然后求解成績?yōu)镈等的人數(shù).
(2)由列聯(lián)表中數(shù)據(jù),代入公式,求出K2的值,進(jìn)而與臨界值比較,即可得出結(jié)論.

解答 解:(1)設(shè)抽取的100名學(xué)生中,本次考試成績?yōu)镈等的有x人,根據(jù)題意得x=100×[1-10×(0.006+0.012×2+0.018+0.024+0.026)]=2,
據(jù)此估計(jì)該校高二年級(jí)學(xué)生在物理學(xué)業(yè)水平考試中,成績?yōu)镈等的人數(shù)為$\frac{2}{100}×1200$=24(人)…(4分)
(2)根據(jù)已知條件得列聯(lián)表如下:

物理成績?yōu)锳等物理成績不為A等合計(jì)
男生a=14b=4660
女生c=6d=3440
合計(jì)2080n=100
因?yàn)镵2=$\frac{100×(14×34-6×46)^{2}}{20×80×60×40}$≈1.042<2.706…(10分)
所以,沒有90%的把握認(rèn)為“該校高二年級(jí)學(xué)生在本次考試中物理成績?yōu)锳等與性別有關(guān)”…(12分)

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查數(shù)據(jù)處理能力、運(yùn)算求解能力和應(yīng)用意識(shí),本題解題的關(guān)鍵是正確運(yùn)算出觀測值,理解臨界值對(duì)應(yīng)的概率的意義,要想知道兩個(gè)變量之間的有關(guān)或無關(guān)的精確的可信程度,只有利用獨(dú)立性檢驗(yàn)的有關(guān)計(jì)算,才能做出判斷,本題是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=x3+sinx,(x∈R).若當(dāng)0<θ<$\frac{π}{2}$時(shí),不等式f(msinθ)+f(1-m)>0恒成立,則實(shí)數(shù)m的取值范圍是(  )
A.[1,+∞)B.(-∞,1]C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平行四邊形ABCD中,O是對(duì)角線的交點(diǎn),下列結(jié)論正確的是( 。
A.$\overrightarrow{AB}$=$\overrightarrow{CD}$,$\overrightarrow{BC}$=$\overrightarrow{AD}$B.$\overrightarrow{AD}$+$\overrightarrow{OD}$=$\overrightarrow{OA}$C.$\overrightarrow{AO}$+$\overrightarrow{OD}$=$\overrightarrow{AC}$+$\overrightarrow{CD}$D.$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$=$\overrightarrow{DA}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知正項(xiàng)等差數(shù)列{an}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比數(shù)列,則a10=(  )
A.19B.20C.21D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)y=3sin3x($\frac{π}{6}$≤x≤$\frac{5π}{6}$)與函數(shù)y=3的圖象圍成一個(gè)封閉圖形,這個(gè)封閉圖形的面積是(  )
A.B.2C.D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{8}$=1(a>2$\sqrt{2}$)的右焦點(diǎn)為F,右頂點(diǎn)為A,上頂點(diǎn)為B,且滿足$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{8e}{|FA|}$,其中O 為坐標(biāo)原點(diǎn),e為橢圓的離心率.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)P是橢圓C上一點(diǎn),直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:|AN|•|BM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若實(shí)數(shù)a,b滿足0<a<2,0<b<1,則a-b的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題不正確的個(gè)數(shù)是( 。
①若函數(shù)f(x)在(-∞,0]及(0,+∞)上都是減函數(shù),則f(x)在(-∞,+∞)上是減函數(shù);
②命題p:x≠2或y≠3,命題q:x+y≠5,則p是q的必要不充分條件;
③函數(shù)f(x)=$\frac{\sqrt{9-{x}^{2}}}{|x+4|-4}$是非奇非偶函數(shù);
④若命題“?x0∈R使得x02+mx0+2m-3<0”為假命題,則實(shí)數(shù)m的取值范圍是(2,6).
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案