5.已知x>y>0,求證:$\sqrt{x}$-$\sqrt{y}$$<\sqrt{x-y}$.

分析 運用分析法證明,可移項,再兩邊平方即可得證.

解答 證明:由x>y>0,可得x-y>0,
要證$\sqrt{x}$-$\sqrt{y}$<$\sqrt{x-y}$,
即證$\sqrt{x}$<$\sqrt{y}$+$\sqrt{x-y}$,
即有x<y+x-y+2$\sqrt{y(x-y)}$,
即為2$\sqrt{y(x-y)}$>0,顯然成立.
則有$\sqrt{x}$-$\sqrt{y}$<$\sqrt{x-y}$成立.

點評 本題考查不等式的證明,注意運用分析法證明,考查推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若an+1+(-1)nan=2n-1,則S40=820.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.空間四邊形的兩條對角線相互垂直,順次連接四邊中點的四邊形一定是( 。
A.空間四邊形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}+(a+1)x+a}{{x}^{2}}$為偶函數(shù).
(1)求實數(shù)a的值;
(2)記集合A={y|y=f(x),x∈{1,-2,3}},p=(lg2)2+lg2lg5+lg5+$\frac{1}{4}$,判斷p與集合A的關(guān)系;
(3)當(dāng)x∈[m,n](m>0,n>0)時,若函數(shù)f(x)的值域為[-$\frac{2}{m}$+2,-$\frac{n}{8}$+1],求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某民營企業(yè)生產(chǎn)甲乙兩種產(chǎn)品.根據(jù)市場調(diào)查與預(yù)測,甲產(chǎn)品的利潤 P(x)與投資額x成正比,其關(guān)系如圖1;乙產(chǎn)品的利潤Q(x)與投資額x的算術(shù)平方根成正比,其關(guān)系如圖2(利潤與投資單位:萬元).
(1)試寫出利潤 P(x)和Q(x)的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到3萬元資金,并全部投入甲乙兩種產(chǎn)品的生產(chǎn).問怎樣分配這3萬元資金,才能使企業(yè)獲得最大利潤,其最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知k∈R,直線l1:x+ky=0過定點P,直線l2:kx-y-2k+2=0過定點Q,兩直線交于點M,則|MP|+|MQ|的最大值是( 。
A.2$\sqrt{2}$B.4C.4$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=sin(2ωx-$\frac{π}{6}$)(ω>0)的最小正周期為4π,則( 。
A.函數(shù)f(x)的圖象關(guān)于點($\frac{π}{6}$,0)對稱B.函數(shù)f(x)的圖象關(guān)于直線x=$\frac{π}{6}$對稱
C.函數(shù)f(x)的圖象在($\frac{π}{2}$,π)上單調(diào)遞減D.函數(shù)f(x)的圖象在($\frac{π}{2}$,π)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=sinx-x在區(qū)間[0,2π]上的最小值為( 。
A.B.1-$\frac{π}{2}$C.0D.-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不等式($\frac{1}{3}$-x)($\frac{1}{2}$+x)<0的解集為( 。
A.(-∞,-$\frac{1}{2}$)∪($\frac{1}{3}$,+∞)B.(-$\frac{1}{2}$,$\frac{1}{3}$)C.(-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞)D.(-$\frac{1}{3}$,$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊答案