1.復(fù)數(shù)z滿足:(z-i)(2-i)=5,則|z|=$2\sqrt{2}$.

分析 由(z-i)(2-i)=5,得$z=\frac{6+2i}{2-i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z,再由復(fù)數(shù)求模公式計(jì)算得答案.

解答 解:由(z-i)(2-i)=z(2-i)-1-2i=5,
得$z=\frac{6+2i}{2-i}$=$\frac{(6+2i)(2+i)}{(2-i)(2+i)}=\frac{10+10i}{5}=2+2i$.
則|z|=$\sqrt{{2}^{2}+{2}^{2}}=2\sqrt{2}$.
故答案為:$2\sqrt{2}$.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動的時間(單位:分鐘)進(jìn)行調(diào)查,將收集到的數(shù)據(jù)分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六組,并作出頻率分布直方圖(如圖).將日均課外體育鍛煉時間不低于40分鐘的學(xué)生評價為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過計(jì)算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計(jì)
603090
9020110
合計(jì)15050200
(2)現(xiàn)按照“課外體育達(dá)標(biāo)”與“課外體育不達(dá)標(biāo)”進(jìn)行分層抽樣,抽取12人,再從這12名學(xué)生中隨機(jī)抽取3人參加體育知識問卷調(diào)查,記“課外體育達(dá)標(biāo)”的人數(shù)為ξ,求ξ得分布列和數(shù)學(xué)期望.
附參考公式與數(shù)據(jù):K2=$\frac{n({ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.100.050.0100.0050.001
k02.7063.8416.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.有人手抓一把的骰子,共16顆,顆顆相同,擲到桌面上,則6點(diǎn)朝上的顆數(shù)是2的可能性最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等腰梯形ABCD中,AD∥BC,AC、BD交于點(diǎn)Q,AC平分∠DAB,AP為梯形ABCD外接圓的切線,交BD的延長線于點(diǎn)P.
(1)求證:PQ2=PD•PB;
(2)若AB=4,AP=3,AD=$\frac{3}{2}$,求AQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(x-a)lnax,g(x)=x2-(a+$\frac{1}{a}$)x+1(a∈R,a>1).
(Ⅰ)若函數(shù)f(x)在x=a處的切線l斜率為2,求l的方程;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)x∈($\frac{1}{a}$,a)時,f(x)>g(x)恒成立.若存在,求a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點(diǎn).
(1)設(shè)F是棱AB的中點(diǎn),證明:直線EE1∥平面FCC1
(2)證明:平面D1AC⊥平面BB1C1C;
(3)求點(diǎn)D到平面D1AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知sinα+cosα=$\frac{1}{2}$,α∈(0,π),求$\frac{1-tanα}{1+tanα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給定兩個向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1),若$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$垂直,則x的值等于±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)x∈[π,2π],則sinx≤-$\frac{1}{2}$的概率為(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案