分析 利用兩角和的正切公式,結(jié)合線性規(guī)劃問題以及幾何概型的概率公式即可得到.
解答 解:設(shè)正方形的邊長為2,AP=x,BQ=y,如圖1,
則0≤x≤2,0≤y≤2,平面區(qū)域{(x,y)|0≤x≤2,0≤y≤2}對(duì)應(yīng)的區(qū)域面積S=4.
E為AB中點(diǎn),則tan∠QEB=$\frac{BQ}{EB}$=y,tan∠AEP=$\frac{AP}{AE}$=x,
則tan(∠QEB+∠AEP)=$\frac{tan∠QEB+tan∠AEP}{1-tan∠QEBtan∠AEP}$=$\frac{x+y}{1-xy}$,
若∠PEQ為銳角,則等價(jià)為∠QEB+∠AEP是鈍角,
即tan(∠QEB+∠AEP)=$\frac{x+y}{1-xy}$<0,
即1-xy<0,即y>$\frac{1}{x}$,
作出對(duì)應(yīng)的平面區(qū)域如圖2:
當(dāng)y=2時(shí),由y=$\frac{1}{x}$,解得x=$\frac{1}{2}$,滿足y>$\frac{1}{x}$的部分如圖 2陰影部分,
其面積為:${∫}_{\frac{1}{2}}^{2}$(2-$\frac{1}{x}$)dx=(2x-lnx)|${\;}_{\frac{1}{2}}^{2}$=3-2ln2,
由幾何概型公式得到∠PMQ為銳角的概率為$\frac{3-2ln2}{4}$;
故答案為:$\frac{3-2ln2}{4}$.
點(diǎn)評(píng) 本題主要考查幾何概型的概率計(jì)算,根據(jù)條件將∠PMQ為銳角進(jìn)行轉(zhuǎn)化,利用積分求出對(duì)應(yīng)區(qū)域的面積是解決本題的關(guān)鍵,綜合性較強(qiáng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$-1 | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{3}$,1) | B. | ($\frac{1}{2}$,1) | C. | ($\frac{2}{3}$,1) | D. | ($\frac{1}{2}$,$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年山西忻州一中高一上學(xué)期新生摸底數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,過點(diǎn)的直線與軸交于點(diǎn),,直線上的點(diǎn)位于軸左側(cè),且到軸的距離為1.
(1)求直線的表達(dá)式;
(2)若反比例函數(shù)的圖象經(jīng)過點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com