5.己知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),以C的一個頂點為圓心,a為半徑的圓被C截得的劣弧長為$\frac{2π}{3}a$,則雙曲線C的離心率為$\frac{2\sqrt{10}}{5}$.

分析 設(shè)雙曲線與圓A在第一象限的交點為P,由題意可得AP與x軸的夾角為60°,由三角函數(shù)的定義可得P的坐標(biāo),代入雙曲線的方程,結(jié)合a,b,c和離心率公式計算即可得到所求值.

解答 解:設(shè)雙曲線與圓A在第一象限的交點為P,
由題意可得AP與x軸的夾角為60°,
即有P(a+acos60°,asin60°),
即為($\frac{3a}{2}$,$\frac{\sqrt{3}}{2}$a),
代入雙曲線的方程可得$\frac{9{a}^{2}}{4{a}^{2}}$-$\frac{3{a}^{2}}{4^{2}}$=1,
即有3a2=5b2=5(c2-a2),
即5c2=8a2,
由e=$\frac{c}{a}$,可得e=$\frac{2\sqrt{10}}{5}$.
故答案為:$\frac{2\sqrt{10}}{5}$.

點評 本題考查雙曲線的離心率的求法,注意運用點滿足雙曲線的方程,考查化簡整理的運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某高校一專業(yè)在一次自主招生中,對20名已經(jīng)選拔入圍的學(xué)生進(jìn)行語言表達(dá)能力和邏輯思維能力測試,結(jié)果如表:
語言表達(dá)能力
人數(shù)
邏輯思維能力
一般良好優(yōu)秀
一般221
良好4m1
優(yōu)秀13n
由于部分?jǐn)?shù)據(jù)丟失,只知道從這20名參加測試的學(xué)生中隨機抽取一人,抽到語言表達(dá)能力優(yōu)秀或邏輯思維能力優(yōu)秀的學(xué)生的概率為$\frac{2}{5}$.
(1)求m,n的值;
(2)從參加測試的語言表達(dá)能力良好的學(xué)生中任意抽取2名,求其中至少有一名邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.平面直角坐標(biāo)系xOy中,雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與拋物線C2:y2=2px(p>0)交于點O,A,B,若△OAB的重心為C2的焦點,則C1的漸近線方程為( 。
A.y=±$\frac{\sqrt{6}}{4}$xB.y=±$\frac{2\sqrt{6}}{3}$xC.y=±2$\sqrt{2}$xD.y=±$\frac{2\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的左右焦點分別為F1、F2,點P為雙曲線上一點,△F1PF2的內(nèi)切圓圓心為M,若S${\;}_{△{F}_{1}PM}$=S${\;}_{△{F}_{2}PM}$+8,那么S${\;}_{△{F}_{1}M{F}_{2}}$( 。
A.2$\sqrt{7}$B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點F1、F2是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,O為坐標(biāo)原點,點P在雙曲線C的右支上,且滿足|F1F2|=2|OP|,|PF1|≥3|PF2|,則雙曲線C的離心率的取值范圍為( 。
A.(1,+∞)B.[$\frac{\sqrt{10}}{2}$,+∞)C.(1,$\frac{\sqrt{10}}{2}$]D.(1,$\frac{5}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)E為正方形ABCD邊AB的中點,分別在邊AD、BC上任取兩點P、Q.則∠PEQ為銳角的概率為$\frac{3-2ln2}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)ax2+2ax+1<0恒成立,求a的范圍;
(2)ax2+2ax+1<0的解集是空集,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知p:a>4,q:方程$\frac{{x}^{2}}{4-a}$-$\frac{{y}^{2}}{1-a}$=1表示雙曲線,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年山西忻州一中高一上學(xué)期新生摸底數(shù)學(xué)試卷(解析版) 題型:解答題

先化簡,再求值:,其中.

查看答案和解析>>

同步練習(xí)冊答案