雙曲線
x2
3
-y2=1的右焦點(diǎn)到直線x-
3
y=0的距離是( 。
A、2
3
B、2
C、
3
D、1
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先由題中條件求出右焦點(diǎn)坐標(biāo),再代入點(diǎn)到直線的距離公式即可求出結(jié)論.
解答: 解:由題得:其右焦點(diǎn)坐標(biāo)為(-2,0).
所以右焦點(diǎn)到直線x-
3
y=0的距離是d=
2
1+3
=1.
故選:D.
點(diǎn)評(píng):本題主要考查雙曲線的基本性質(zhì),點(diǎn)到直線的距離公式,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線x2-
y2
3
=1的右焦點(diǎn)到拋物線y2=4x準(zhǔn)線的距離等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)-g(x)在[a,b]上有兩個(gè)不同的零點(diǎn),則稱f(x)與g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為f(x)與g(x)的“關(guān)聯(lián)區(qū)間”.若f(x)=
1
3
x3-x2-x與g(x)=2x+b的“關(guān)聯(lián)區(qū)間”是[-3,0],則b的取值范圍是( 。
A、[-9,0]
B、[0,
5
3
]
C、[0,
5
3
D、[-9,
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,
AB
+
AD
AO
,則λ=( 。
A、2
B、
3
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一門(mén)高射炮射擊一次擊中目標(biāo)的概率是0.4,那么至少需要這樣的高射炮多少門(mén)同時(shí)對(duì)某一目標(biāo)射擊一次,才能使該目標(biāo)被擊中的概率超過(guò)96%(提供的數(shù)據(jù):lg2=0.30,lg3=0.48)( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若雙曲線x2+
y2
k
=1的離心率是2,則焦距為( 。
A、2
B、2
2
C、2
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知角θ的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸正半軸重合,終邊在直線3x-y=0上,則
sin(
2
+θ)+2cos(π-θ)
sin(
π
2
-θ)-sin(π-θ)
等于( 。
A、-
3
2
B、
3
2
C、0
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐的三個(gè)側(cè)面與底面所成的二面角都相等,那么這個(gè)三棱錐頂點(diǎn)在底面三角形所在平面上射影O必是底面三角形的( 。
A、內(nèi)心B、外心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=-2n+11.
(1)數(shù)列{an}的前幾項(xiàng)和最大;
(2)如果bn=|an|(n∈N),求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案