已知等差數(shù)列{an}的前n項和為Sn,且a3=3,S7=28,在等比數(shù)列{bn}中,b3=4,b4=8,
(1)求an及bn;
(2)設(shè)數(shù)列{an•bn}的前n項和Tn,求T5
考點:數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(1)利用方程組,求出基本量,即可求an及bn
(2)由(1)得:anbn=n×2n-1,即可求T5
解答: 解:(1)依題意設(shè){an}的公差為d,{bn}的公比為q,則有:
a1+2d=3
7a1+21d=28
得:
a1=1
d=1
…(3分)
b3=b1q2=4
b4=b1q3=8
得:
b1=1
q=2
…(6分)
∴an=a1+(n-1)d=1+(n-1)×1=n….(7分)
bn=b1qn-1=1×2n-1…(8分)
(2)由(1)得:anbn=n×2n-1…..(9分)
∴T5=1×20+2×21+3×22+4×23+5×24=129.(12分).
點評:本題考查數(shù)列的通項,考查等差數(shù)列與等比數(shù)列的綜合,考查數(shù)列的和,確定數(shù)列的通項是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x2+2x-m,函數(shù)g(x)=
f(x)
x
+log2
1-x
1+x
-2.且當x∈[1,+∞)時,f(x)≥0恒成立,
(1)當m=3時,求不等式f(x)≥0的解集;
(2)求m的最大值;
(3)當m取最大值時,判斷g(x)的奇偶性并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x+a)-x2+x,g(x)=x•ex-x2-1(x>0),且f(x)點x=1處取得極值.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(x)=-
5
2
x+b在區(qū)間[1,3]上有解,求b的取值范圍;
(Ⅲ)證明:g(x)≥f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-x.
(1)求曲線y=f(x)在x=t處的切線方程;
(2)若在x軸的正半軸上存在一點P(a,0),過點P可作曲線y=f(x)的三條切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
(Ⅰ)a2+b2
(a+b)2
2
;       
(Ⅱ)a2+b2≥2(a-b-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求(x2-
1
2x
9展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知頂點在原點,焦點在y軸上的拋物線被直線y=2x+1截得的弦長為
15
.求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)兩個非零向量
e1
e2
不共線.
(1)如果
AB
=
e1
+
e2
BC
=2
e1
+8
e2
,
CD
=3
e1
-3
e2
,求證:A、B、D三點共線;
(2)若|
e1
|=2,|
e2
|=3,
e1
e2
的夾角為60°,是否存在實數(shù)m,使得m
e1
+
e2
e1
-
e2
垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關(guān)于函數(shù)f(x)=4sin(2x+
3
)(x∈R),有下列命題:
(1)由f(x1)=f(x2)=0,可得x1-x2必定是π的整數(shù)倍;
(2)y=f(x)的表達式可改寫為y=4cos(2x+
π
6
);
(3)y=f(x)的圖象關(guān)于點(
π
6
,0)對稱;
(4)y=f(x)的圖象關(guān)于直線x=-
π
6
對稱,其中正確的命題的序號是
 

查看答案和解析>>

同步練習冊答案