8.設(shè)集合A={x|x>1},集合B={a+2},若A∩B=∅,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

分析 由A與B,以及兩集合的交集為空集,確定出a的范圍即可.

解答 解:∵A={x|x>1},集合B={a+2},若A∩B=∅,
∴a+2≤1,即a≤-1,
則實(shí)數(shù)a的范圍為(-∞,-1],
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為$\sqrt{2}$a,M為A1B1的中點(diǎn),求BC1與平面AMC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在平面直角坐標(biāo)系xOy中,已知圓(x-m-1)2+(y-2m)2=4上有且只有兩個(gè)點(diǎn)到原點(diǎn)O的距離為3,則實(shí)數(shù)m的取值范圍為(-$\frac{12}{5}$,-$\frac{2}{5}$)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.拋物線(xiàn)x2=2y的焦點(diǎn)到其準(zhǔn)線(xiàn)的距離是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知曲線(xiàn)C的方程是x4+y2=1.關(guān)于曲線(xiàn)C的幾何性質(zhì),給出下列三個(gè)結(jié)論:
①曲線(xiàn)C關(guān)于原點(diǎn)對(duì)稱(chēng);
②曲線(xiàn)C關(guān)于直線(xiàn)y=x對(duì)稱(chēng);
③曲線(xiàn)C所圍成的區(qū)域的面積大于π.
其中,所有正確結(jié)論的序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E,F(xiàn)分別在邊AD,BC上,且DE=2AE,CF=2BF.如果對(duì)于常數(shù)λ,在正方形ABCD的四條邊上,有且只有6個(gè)不同的點(diǎn)P使得$\overrightarrow{PE}•\overrightarrow{PF}=λ$成立,那么λ的取值范圍是(  )
A.(0,7)B.(4,7)C.(0,4)D.(-5,16)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.甲、乙兩人進(jìn)行射擊比賽,各射擊4局,每局射擊10次,射擊命中目標(biāo)得1分,未命中目標(biāo)得0分.兩人4局的得分情況如下:
6699
79xy
(Ⅰ)若從甲的4局比賽中,隨機(jī)選取2局,求這2局的得分恰好相等的概率;
(Ⅱ)如果x=y=7,從甲、乙兩人的4局比賽中隨機(jī)各選取1局,記這2局的得分和為X,求X的分布列和數(shù)學(xué)期望;
(Ⅲ)在4局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫(xiě)出x的所有可能取值.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.sin$\frac{5π}{4}$=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知實(shí)數(shù)x滿(mǎn)足($\frac{1}{3}$)2x-4-($\frac{1}{3}$)x-($\frac{1}{3}$)x-2+$\frac{1}{9}$≤0且f(x)=log2$\frac{x}{2}$$lo{g}_{\sqrt{2}}\frac{\sqrt{x}}{2}$
(1)求實(shí)數(shù)x的取值范圍;
(2)求f(x)的最大值和最小值,并求此時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案