已知函數(shù),,其中
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若對任意的為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.

(1) (2)

解析試題分析:(1)先求導(dǎo),根據(jù)題意 (2)可將問題轉(zhuǎn)化為,分別求導(dǎo)令導(dǎo)數(shù)大于0、小于0得單調(diào)性,用單調(diào)性求最值。在解導(dǎo)數(shù)大于0或小于0的過程中注意對的討論。
試題解析:(1)解法1:∵,其定義域為,
.  ∵是函數(shù)的極值點,∴,即
,∴.  經(jīng)檢驗當(dāng)時,是函數(shù)的極值點,∴.、
解法2:∵,其定義域為,
.  令,即,整理,得
,
的兩個實根(舍去),,
當(dāng)變化時,,的變化情況如下表:

依題意,,即,∵,∴
(2)對任意的都有成立等價于對任意的都有.當(dāng)[1,]時,
∴函數(shù)上是增函數(shù).∴
,且,
①當(dāng)[1,]時,
∴函數(shù)在[1,]上是增函數(shù),
.由,得,又,∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)圖像上一點處的切線方程為(1)求的值;(2)若方程在區(qū)間內(nèi)有兩個不等實根,求的取值范圍;(3)令如果的圖像與軸交于兩點,的中點為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的極小值;
(2)求函數(shù)的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)在區(qū)間內(nèi)存在,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)求的單調(diào)增區(qū)間
(2)若內(nèi)單調(diào)遞增,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關(guān)于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當(dāng)木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)為實數(shù),函數(shù)
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知處取得極值,且在點處的切線斜率為.
⑴求的單調(diào)增區(qū)間;
⑵若關(guān)于的方程在區(qū)間上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案