已知雙曲線C的中心是原點(diǎn),右焦點(diǎn)為F(
3
,0).
(1)當(dāng)雙曲線C的離心率e=
3
(2),求此雙曲線C的標(biāo)準(zhǔn)方程;
(3)若雙曲線C的一條漸近線方程為X+
2
Y=0,求此雙曲線C的標(biāo)準(zhǔn)方程.
考點(diǎn):雙曲線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)依題意設(shè)雙曲線C的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,由已知得c=
3
,e=
c
a
=
3
,由此能求出雙曲線C的標(biāo)準(zhǔn)方程.
(2)設(shè)雙曲線C的方程為x2-2y2=λ(λ>0),由已知得λ+
λ
2
=3,由此能求出雙曲線C的方程.
解答: 解:(1)依題意設(shè)雙曲線C的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
…(1分)
c=
3
,e=
c
a
=
3
,∴a=1,b=
2
…(4分)
∴雙曲線C的標(biāo)準(zhǔn)方程為x2-
y2
2
=1
…(6分)
(2)設(shè)雙曲線C的方程為x2-2y2=λ(λ>0),…(8分)
λ+
λ
2
=3,解得λ=2,…(11分)
∴雙曲線C的標(biāo)準(zhǔn)方程為
x2
2
-y2=1
.…(13分)
點(diǎn)評:本題考查雙曲線的標(biāo)準(zhǔn)方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ),其中0≤φ<π,ω>1.
(1)若φ=
π
2
,f(x)在區(qū)間[0,
π
4
]上單調(diào)遞減,在區(qū)間[
π
4
,
π
3
]上單調(diào)遞增,求ω的值.
(2)若f(x)為奇函數(shù),f(x)的圖象關(guān)于點(diǎn)M(
π
2
,0)對稱,且在區(qū)間[0,
π
8
]上是單調(diào)函數(shù),求ω的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列函數(shù)中,當(dāng)x取正數(shù)時(shí),最小值為2的函數(shù)序號是
 

(1)y=x+
4
x
;(2)y=lgx+
1
lgx
;(3)y=
x2+1
+
1
x2+1
;(4)y=x2-2x+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3-x2,x∈[-1,2]
x-3,x∈(2,5]

(1)在圖中給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;
(2)寫出f(x)的單調(diào)區(qū)間;
(3)解不等式f(x)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=a與曲線y=x2-|x|有四個(gè)交點(diǎn),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,
a
b
=
1
2
,(
a
-
b
2=
1
2
,則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,該幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)0<x<2,求函數(shù)y=
x(4-2x)
的最大值;
(2)求
4
a-2
+a的取值范圍;
(2)已知x>0,y>0,且x+y=1.求
3
x
+
4
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AC=2,BC=1,cosC=
1
2
,則△ABC的面積為(  )
A、
3
B、
1
2
C、
3
2
D、1

查看答案和解析>>

同步練習(xí)冊答案