16.某班有男生36人,女生18人,用分層抽樣的方法從該班全體學(xué)生抽取一個(gè)容量為9的樣本,則抽取的女生人數(shù)為3.

分析 根據(jù)分層抽樣的定義直接計(jì)算即可.

解答 解:∵男生36人,女生18人,
∴男生和女生人數(shù)比為36:18=2:1,
∴抽取一個(gè)容量為9的樣本,則抽取的女生人數(shù)為9×$\frac{1}{2+1}$=3,
故答案為:3.

點(diǎn)評 本題主要考查分層抽樣的定義和應(yīng)用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一船自西向東勻速航行,上午10時(shí)到達(dá)一座燈塔P的南偏西75°、距燈塔68海里的M處,下午2時(shí)到達(dá)這座燈塔南偏東45°的N處,則該船航行的速度為(單位:海里/小時(shí))( 。
A.$\frac{17\sqrt{2}}{2}$B.34$\sqrt{6}$C.$\frac{17\sqrt{6}}{2}$D.34$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知平面α與β所成的二面角為70°,P為α,β外一定點(diǎn),則過點(diǎn)P的一條直線與α、β所成的角都是35°,則這樣的直線有且僅有(  )
A.1條B.3條C.4條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的漸近線方程為( 。
A.y=$±\frac{1}{2}$xB.y=$±\sqrt{3}$xC.y=$±\frac{\sqrt{3}}{2}$xD.y=$±\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(a-1)x+blnx,此函數(shù)在(1,f(1))處的切線為y=x-1.
(Ⅰ)若函數(shù)g(x)=f(x)-$\frac{x+1}{x-1}$,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)h(x)=ex圖象上存在一點(diǎn)M(x0,h(x0))處的切線為直線l,若直線l也是曲線y=f(x),x∈(1,+∞)的切線,試證明:實(shí)數(shù)x0存在且唯一.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{5}}{2}$,則C的漸近線方程為( 。
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=lnx-mx+1在x=1處取得極值.
(Ⅰ)求曲線y=f(x)在x=$\frac{1}{e}$處的切線方程;
(Ⅱ)求證:f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$\underset{lim}{x→-2}$$\frac{{x}^{2}+ax+b}{{x}^{2}+x-2}$=-1,則a,b的值為(  )
A.a=7,b=10B.a=7,b=-10C.a=-7,b=10D.a=-7,b=-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知條件p:x2-5x+6≤0,條件q:關(guān)于x的不等式x2+mx+m+3>0.
(1)若條件q中對于一切x∈R恒為真,求實(shí)數(shù)m的取值范圍;
(2)若p是¬q的充分不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案