1.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{5}}{2}$,則C的漸近線方程為(  )
A.y=±$\frac{1}{4}$xB.y=±$\frac{1}{3}$xC.y=±$\frac{1}{2}$xD.y=x

分析 根據(jù)題意,由雙曲線的離心率為$\frac{\sqrt{5}}{2}$,分析可得e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}}$=1+$\frac{^{2}}{{a}^{2}}$=$\frac{5}{4}$,計算可得$\frac{a}$的值,結(jié)合焦點在x軸上的雙曲線的漸近線方程即可得答案.

解答 解:根據(jù)題意,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{5}}{2}$,
則有e2=$\frac{{c}^{2}}{{a}^{2}}$=$\frac{{a}^{2}+^{2}}{{a}^{2}}$=1+$\frac{^{2}}{{a}^{2}}$=$\frac{5}{4}$,
即$\frac{^{2}}{{a}^{2}}$=$\frac{1}{4}$,即有$\frac{a}$=$\frac{1}{2}$,
又由雙曲線的焦點在x軸上,則其漸近線方程為:y=±$\frac{1}{2}$x;
故選:C.

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,注意雙曲線的焦點的位置.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若數(shù)列{an}滿足a8=-$\frac{1}{2}$,an+1=$\frac{1}{1-{a}_{n}}$,則a1=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知正方形ABCD的邊長為1,F(xiàn)D⊥平面ABCD,EB⊥平面ABCD,F(xiàn)D=BE=1,M為BC邊上的動點.
(Ⅰ)證明:ME∥平面FAD;
(Ⅱ)當(dāng)平面AME⊥平面AEF時.求二面角B-AE-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.命題:
①兩直線平行的充要條件是它們的斜率相等;
②拋物線y=ax2(a<0)的焦點坐標(biāo)是(0,-$\frac{1}{4a}$);
③平面內(nèi)到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;
④拋物線上任意一點M到其焦點的距離都等于點M到其準(zhǔn)線的距離.
其中錯誤命題的標(biāo)號是①②③.(填寫所有錯誤命題的標(biāo)號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某班有男生36人,女生18人,用分層抽樣的方法從該班全體學(xué)生抽取一個容量為9的樣本,則抽取的女生人數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,該雙曲線的右支上有一點A,滿足△OAF是等邊三角形(O為坐標(biāo)原點),則雙曲線的離心率為( 。
A.4B.2C.$\sqrt{3}$+1D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),且導(dǎo)函數(shù)f'(x)=Aωcos(ωx+φ)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A.$f(x)=cos({2x-\frac{π}{6}})$B.$f(x)=sin({2x+\frac{π}{6}})$C.$f(x)=\frac{1}{2}cos({2x+\frac{π}{6}})$D.$f(x)=\frac{1}{2}sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=5sinxcosx-5$\sqrt{3}$cos2x+$\frac{5}{2}$$\sqrt{3}$(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在(ax6$+\frac{x}$)4的二項展開式中,如果x3的系數(shù)為20,那么ab3=5.

查看答案和解析>>

同步練習(xí)冊答案