13.已知向量$\overrightarrow{a}$,$\overrightarrow$為單位向量,$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,向量$\overrightarrow{c}$滿足$\overrightarrow{a}$-$\overrightarrow{c}$與$\overrightarrow$-$\overrightarrow{c}$的夾角為$\frac{π}{6}$,則|$\overrightarrow{a}$-$\overrightarrow{c}$|的最大值為(  )
A.$\frac{3}{2}$B.4C.$\frac{5}{2}$D.2

分析 由$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,向量$\overrightarrow{a}$,$\overrightarrow$為單位向量,可得$<\overrightarrow{a},\overrightarrow>$=$\frac{π}{3}$.設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$.由向量$\overrightarrow{c}$滿足$\overrightarrow{a}$-$\overrightarrow{c}$與$\overrightarrow$-$\overrightarrow{c}$的夾角為$\frac{π}{6}$,可得∠ACB=$\frac{π}{6}$.由等邊三角形OAB,點(diǎn)C在AB外且∠ACB為定值,可得C的軌跡是兩段圓弧,∠ACB是AB所對(duì)的圓周角.因此:當(dāng)AC時(shí)是弧$\widehat{AB}$所在圓(上述圓弧)的直徑時(shí),|$\overrightarrow{a}$-$\overrightarrow{c}$|取得最大值$|\overrightarrow{AC}|$.

解答 解:∵$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{2}$,向量$\overrightarrow{a}$,$\overrightarrow$為單位向量,
∴$1×1×cos<\overrightarrow{a},\overrightarrow>$=$\frac{1}{2}$,
∴$<\overrightarrow{a},\overrightarrow>$=$\frac{π}{3}$.
設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$.
∵向量$\overrightarrow{c}$滿足$\overrightarrow{a}$-$\overrightarrow{c}$與$\overrightarrow$-$\overrightarrow{c}$的夾角為$\frac{π}{6}$,
∴∠ACB=$\frac{π}{6}$.
由等邊三角形OAB,點(diǎn)C在AB外且∠ACB為定值,可得C的軌跡是兩段圓弧,∠ACB是AB所對(duì)的圓周角.
可知:當(dāng)AC時(shí)是弧$\widehat{AB}$所在圓(上述圓弧)的直徑時(shí),|$\overrightarrow{a}$-$\overrightarrow{c}$|取得最大值$|\overrightarrow{AC}|$,
在△ABC中,由正弦定理可得:$AC=\frac{AB}{sin3{0}^{°}}$=2.
∴|$\overrightarrow{a}$-$\overrightarrow{c}$|取得最大值是2.
故選:D.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積運(yùn)算性質(zhì)、向量的減法運(yùn)算及其幾何意義、圓的性質(zhì)、直角三角形的邊角關(guān)系,考查了數(shù)形結(jié)合的思想方法、推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知四棱錐的側(cè)棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD=$\frac{1}{2}$CD=2,點(diǎn)M在側(cè)棱上.
(1)求證:BC⊥平面BDP;
(2)若側(cè)棱PC與底面ABCD所成角的正切值為$\frac{1}{2}$,點(diǎn)M為側(cè)棱PC的中點(diǎn),求異面直線BM與PA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=e2x,g(x)=$\frac{1}{1-x}$(x2-ax-2xsinx+1),x∈[-1,0].
(Ⅰ)求證:$\frac{1+x}{1-x}$≤f(x)≤$\frac{1}{(1-x)^{2}}$;
(Ⅱ)若?x∈[-1,0],使得f(x)≥g(x)恒成立,求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函f(x)=$\frac{1}{2}$ax2+(a-1)x,g(x)=tlnx,數(shù)若直線y=e-2x+1是g(x)在x=e2處的切線方程.
(Ⅰ)函數(shù)f(x)+g(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a>0時(shí),對(duì)任意正實(shí)數(shù)x,不等式f(x)≥g(x)+2k-$\frac{3}{2a}$恒成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)證明:$\frac{{n}^{n}}{(n+1)^{n+1}}$<$\frac{1}{ne}$(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,在△ABC中,$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BP}=\frac{1}{3}\overrightarrow{BD}$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λ+μ的值為(  )
A.$\frac{8}{9}$B.$\frac{4}{9}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且b2+c2=a2+$\sqrt{3}$bc.sinAsinB=cos2$\frac{C}{2}$.
(1)求角A,B,C的大小;
(2)若BC邊上的中線AM的長(zhǎng)為$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知在△ABC中,BC=5,G、O分別是△ABC的重心和外心,且$\overrightarrow{OG}$•$\overrightarrow{BC}$=5,則△ABC的形狀是鈍角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為$\frac{1}{3}$,乙獲勝的概率為$\frac{2}{3}$,各局比賽結(jié)果相互獨(dú)立.
(1)求乙在4局以內(nèi)(含4局)贏得比賽的概率;
(2)若每局比賽勝利方得1分,對(duì)方得0分,求甲最終總得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)P,Q為一個(gè)正方體表面上的兩點(diǎn),已知此正方體繞著直線PQ旋轉(zhuǎn)θ(0<θ<2π)角后能與自身重合,那么符合條件的直線PQ有13條.

查看答案和解析>>

同步練習(xí)冊(cè)答案