分析 在△ABC中,G,O分別為△ABC的重心和外心,取BC的中點為D,連接AD、OD、GD,運用重心和外心的性質(zhì),運用向量的三角形法則和中點的向量形式,以及向量的平方即為模的平方,可得${\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2}$=-30,又BC=5,則有|$\overrightarrow{AB}$|2=|$\overrightarrow{AC}$|2+$\frac{6}{5}$|$\overrightarrow{BC}$|2>|$\overrightarrow{AC}$|2+|$\overrightarrow{BC}$|2,運用余弦定理即可判斷三角形的形狀
解答 解:在△ABC中,G,O分別為△ABC的重心和外心,
取BC的中點為D,連接AD、OD、GD,如圖:
則OD⊥BC,GD=$\frac{1}{3}$AD,
∵$\overrightarrow{OG}$=$\overrightarrow{OD}+\overrightarrow{DG}$,$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}+\overrightarrow{AC}$),
由$\overrightarrow{OG}$•$\overrightarrow{BC}$=5,
則($\overrightarrow{OD}+\overrightarrow{DG}$)$•\overrightarrow{BC}$=$\overrightarrow{DG}•\overrightarrow{BC}$=$-\frac{1}{6}$($\overrightarrow{AB}+\overrightarrow{AC}$)$•\overrightarrow{BC}$=5,
即-$\frac{1}{6}$•($\overrightarrow{AB}+\overrightarrow{AC}$)($\overrightarrow{AC}-\overrightarrow{AB}$)=5,
則${\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2}$=-30,
又BC=5,
則有|$\overrightarrow{AB}$|2=|$\overrightarrow{AC}$|2+$\frac{6}{5}$|$\overrightarrow{BC}$|2>|$\overrightarrow{AC}$|2+|$\overrightarrow{BC}$|2,
由余弦定理可得cosC<0,
即有C為鈍角.
則三角形ABC為鈍角三角形;
故答案為:鈍角三角形.
點評 本題考查向量的數(shù)量積的性質(zhì)和運用,主要考查向量的三角形法則和向量的平方即為模的平方,運用余弦定理判斷三角形的形狀是解題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{AE}$•$\overrightarrow{FC}$=0 | B. | $\overrightarrow{AE}$•$\overrightarrow{DF}$>0 | C. | $\overrightarrow{FC}$=$\overrightarrow{FD}$+$\overrightarrow{FB}$ | D. | $\overrightarrow{FD}$•$\overrightarrow{FB}$<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 2$\sqrt{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 4 | C. | $\frac{5}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-6,0) | B. | (-6,2) | C. | (-2,0) | D. | (0,6) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com