分析 (1)由圖象可知半周期為$\frac{π}{2}$,代入周期公式求出ω;
(2)根據(jù)正弦函數(shù)的單調區(qū)間列出不等式求出.
解答 解:(1)由圖象可知f(x)的周期T=2($\frac{5π}{8}-\frac{π}{8}$)=π.
∴$\frac{2π}{|ω|}$=π,∴|ω|=2,∵f($\frac{π}{8}$)=2sin($\frac{ωπ}{8}+\frac{π}{4}$)=2,∴ω=2.
(2)f(x)=2sin(2x+$\frac{π}{4}$).
令$\frac{π}{2}+2kπ$≤2x+$\frac{π}{4}$≤$\frac{3π}{2}+2kπ$,解得$\frac{π}{8}+kπ$≤x≤$\frac{5π}{8}+kπ$.
∴函數(shù)f(x)的單調遞減區(qū)間是[$\frac{π}{8}+kπ$,$\frac{5π}{8}+kπ$],k∈Z.
點評 本題考查了正弦函數(shù)的圖象與性質,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x/g | 5 | 10 | 15 | 20 | 25 | 30 |
y/g | 7.25 | 8.12 | 8.95 | 9.90 | 10.9 | 11.8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$) | B. | [$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$) | C. | [-$\frac{1}{{e}^{2}}$,$\frac{1}{e}$) | D. | [$\frac{1}{{e}^{2}}$,$\frac{1}{e}$) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com