分析 根據(jù)二面角的定義先作出二面角的平面角,結(jié)合余弦定理即可得到結(jié)論.
解答 解:取CD的中點O,連接AO,BO,
∵四邊形ABCD的四條邊和對角線都相等,
∴AO⊥CD,BO⊥CD,
即CD⊥平面ABO,
即∠AOB是平面ACD和平面BCD所成二面角的平面角,
設(shè)四邊形的邊長為2,
則OC=1,即B0=A0=$\sqrt{3}$,
由余弦定理得cos∠AOB=$\frac{A{O}^{2}+B{O}^{2}-A{B}^{2}}{2AO•BO}$=$\frac{3+3-4}{2×\sqrt{3}•\sqrt{3}}=\frac{2}{6}$=$\frac{1}{3}$,
即∠AOB=arccos$\frac{1}{3}$,
即二面角的大小為arccos$\frac{1}{3}$.
點評 本題主要考查二面角的求解,根據(jù)二面角的定義先作出二面角的平面角是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
品牌 | A1 | A2 | B | C | D |
得分 | 8 | 8 | 8.8 | 9.6 | 9.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com