10.已知tanα=2,計(jì)算$\frac{3sinα-cosα}{sinα+2cosα}$=$\frac{5}{4}$.

分析 根據(jù)題意,利用關(guān)系式tanα=$\frac{sinα}{cosα}$將原式化簡可得原式=$\frac{3tanα-1}{tanα+2}$,將tanα=2代入原式=$\frac{3tanα-1}{tanα+2}$即可得答案.

解答 解:根據(jù)題意,原式=$\frac{3sinα-cosα}{sinα+2cosα}$=$\frac{3\frac{sinα}{cosα}-\frac{cosα}{cosα}}{\frac{sinα}{cosα}+2\frac{cosα}{cosα}}$=$\frac{3tanα-1}{tanα+2}$,
而tanα=2,
則原式=$\frac{3×2-1}{2+2}$=$\frac{5}{4}$;
故答案為:$\frac{5}{4}$.

點(diǎn)評 本題考查同角三角函數(shù)基本關(guān)系式的運(yùn)用,關(guān)鍵是充分利用tanα=$\frac{sinα}{cosα}$進(jìn)行化簡、變形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+{x}^{2}-2,x≥0}\\{lo{g}_{2}(-x)+|x|,x<0}\end{array}\right.$的零點(diǎn)的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的雙曲線的兩條漸近線的夾角為$\frac{π}{3}$,則雙曲線的離心率為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{6}}{3}$C.$\frac{2\sqrt{3}}{3}$或2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,若b=2,c=6,∠A=$\frac{π}{4}$,則S△ABC=( 。
A.3$\sqrt{2}$B.4$\sqrt{2}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線x-4y+12=0在x軸和y軸的截距分別是( 。
A.12,3B.-12,-3C.12,-3D.-12,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.曲線C:y=2sinx在x=$\frac{π}{6}$和x=x0處的切線互相垂直,將曲線C的圖象向左平移$\frac{π}{2}$+φ個(gè)單位后所得的圖象關(guān)于直線x=x0對稱,則cos2φ的值為-$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$,公比q>0,S1+a1,S3+a3,S2+a2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+2}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x>1,則$\sqrt{(1-x)^{2}}$=x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.正方體ABCD-A1B1C1D1中.
(1)求A1B與平面A1B1CD所成角的大小;
(2)求二面角B1-A1C1-B的平面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案