5.直線x-4y+12=0在x軸和y軸的截距分別是( 。
A.12,3B.-12,-3C.12,-3D.-12,3

分析 直接化直線的一般式方程為截距式得答案.

解答 解:由x-4y+12=0,得x-4y=-12,
即$\frac{x}{-12}+\frac{y}{3}=1$,
∴直線x-4y+12=0在x軸和y軸的截距分別是-12,3.
故選:D.

點評 本題考查直線方程的截距式,考查了一般式與截距式的互化,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,是一曲邊三角形地塊,其中曲邊AB是以A為頂點,AC為對稱軸的拋物線的一部分,點B到邊AC的距離為2km,另外兩邊AC,BC的長度分別為8km,2$\sqrt{5}$km.現(xiàn)欲在此地塊內(nèi)建一形狀為直角梯形DECF的科技園區(qū).
(Ⅰ)求此曲邊三角形地塊的面積;
(Ⅱ)求科技園區(qū)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a為實數(shù),函數(shù)f(x)=|x2-ax|在區(qū)間[0,1]上的最大值記為g(a).
(1)求g(a)的解析式;
(2)若關(guān)于a的方程g(a)-3+b=0有兩解,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知二次函數(shù)f(x)的圖象過點(0,4),且關(guān)于方程f(x)=2x有兩實數(shù)根:x1=1,x2=4;函數(shù)g(x)=2x+m.
(1)求f(x)解析式;
(2)若函數(shù)h(x)=f(x)-(2t-3)x(t∈R)在區(qū)間x∈[0,1]上最小值是$\frac{7}{2}$.求t的值;
(3)設(shè)f(x)與g(x)是定義在同一區(qū)間[p,q]上的兩個函數(shù),若函數(shù)F(x)=f(x)-g(x),在x∈[p,q]上有兩個不同的零點,則稱f(x)和g(x)在[p,q]上是“Ω函數(shù)”,若f(x)與g(x)在[0,3]上是“Ω函數(shù)”,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:方程x2+my2=2表示焦點在y軸上的橢圓,命題q:不等式4x2+4(m-2)x+1>0在x∈R上恒成立,又p∨q為真,?q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tanα=2,計算$\frac{3sinα-cosα}{sinα+2cosα}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點A(3,2),B(-2,a),C(8,12)在同一條直線上,則a的值是( 。
A.0B.-4C.-8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x>1,y>1,xy=e,則xlny的最大值是${e}^{\frac{1}{4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0,則稱x0是f(x)的一個不動點,已知f(x)=x2+ax+4在[1,3]恒有兩個不同的不動點,則實數(shù)a的取值范圍$[-\frac{10}{3},-3)$.

查看答案和解析>>

同步練習(xí)冊答案