17.已知曲線f(x)=x2的一條過點P(x0,y0)的切線,求:
(1)切線平行于直線y=-x+2時切點P的坐標及切線方程;
(2)切線垂直于直線2x-6y+5=0時切點P的坐標及切線方程;
(3)切線與x軸正方向成60°的傾斜角時切點P的坐標及切線方程.

分析 求導數(shù),利用斜率可得切點的坐標,即可求出切線方程.

解答 解:∵f(x)=x2,∴f′(x)=2x,∴f′(x0)=2x0,
(1)由2x0=-1,可得x0=-$\frac{1}{2}$,∴y0=$\frac{1}{4}$,∴P(-$\frac{1}{2}$,$\frac{1}{4}$),
切線方程:y-$\frac{1}{4}$=-(x+$\frac{1}{2}$),即x+y+$\frac{1}{4}$=0;
(2)由2x0=-3,可得x0=-$\frac{3}{2}$,∴y0=$\frac{9}{4}$,∴P(-$\frac{3}{2}$,$\frac{9}{4}$),
切線方程:y-$\frac{9}{4}$=-3(x+$\frac{3}{2}$),即12x+4y+9=0;
(2)由2x0=$\sqrt{3}$,可得x0=$\frac{\sqrt{3}}{2}$,∴y0=$\frac{3}{4}$,∴P($\frac{\sqrt{3}}{2}$,$\frac{3}{4}$),
切線方程:y-$\frac{3}{4}$=$\sqrt{3}$(x-$\frac{\sqrt{3}}{2}$),即$\sqrt{3}$x-y-$\frac{3}{4}$=0.

點評 本題考查導數(shù)的幾何意義,考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知動圓Q過定點F(0,-1),且與直線l:y=1相切,橢圓N的對稱軸為坐標軸,O點為坐標原點,F(xiàn)是其一個焦點,又點A(0,2)在橢圓N上.
(Ⅰ)求動圓圓心Q的軌跡M的標準方程和橢圓N的標準方程;
(Ⅱ)若過F的動直線m交橢圓N于B,C點,交軌跡M于D,E兩點,設(shè)S1為△ABC的面積,S2為△ODE的面積,令Z=S1S2,試求Z的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點為F(1,0),M為橢圓的上頂點,O為坐標原點,且△OMF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線l交橢圓于P,Q兩點,且使點F為△PQM的垂心(即三角形三條高線的交點)?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓Q:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右頂點P(2,0),離心率為$\frac{\sqrt{3}}{2}$,O為坐標原點.
(1)求橢圓O的方程;
(2)設(shè)A、B、M是橢圓上的三點,$\overrightarrow{OM}$=$\frac{3}{5}$$\overrightarrow{OA}$+$\frac{4}{5}$$\overrightarrow{OB}$,點N為線段AB的中點,C、D兩點的坐標分別為(-$\frac{\sqrt{6}}{2}$,0)、($\frac{\sqrt{6}}{2}$,0),求證:|NC|+|ND|=2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=ax3+2x-a,
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若a=n且n∈N*,設(shè)xn是函數(shù)fn(x)=nx3+2x-n的零點.
(i)證明:n≥2時存在唯一xn且${x}_{n}∈(\frac{n}{n+1},1)$;
(i i)若bn=(1-xn)(1-xn+1),記Sn=b1+b2+…+bn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.在四邊形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,AD=5,求AC的長和$\frac{BC}{CD}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x2+bx+c,集合A={x|x=f(x),x∈R},B={x|x=f(f(x)),x∈R}.
(1)證明:A⊆B;
(2)當A={-1,3}時,用列舉法求集合B;
(3)當A為單元集時,求證:A=B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.某廠大量生產(chǎn)一種小零件,經(jīng)抽樣檢驗知道其次品率是1%,現(xiàn)把這種零件中6件裝成一盒,那么該盒中恰好含一件次品的概率是(  )
A.($\frac{99}{100}$)2B.0.01
C.C${\;}_{6}^{1}$$\frac{1}{100}$•(1-$\frac{1}{100}$)5D.C${\;}_{6}^{2}$($\frac{1}{100}$)2•(1-$\frac{1}{100}$)4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x+3,x>0}\\{{x}^{2}-4x+3,x≤0}\end{array}\right.$,不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,則實數(shù)a的取值范圍是( 。
A.(-∞,-2)B.(-∞,0)C.(0,2)D.(-2,0)

查看答案和解析>>

同步練習冊答案