分析 (Ⅰ)求出當(dāng)a=3時(shí)f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;由導(dǎo)數(shù)小于0,可得減區(qū)間;
(Ⅱ)設(shè)點(diǎn)A(t,-$\frac{1}{3}$t3+$\frac{a}{2}$t2-2t)是函數(shù)f(x)圖象上的切點(diǎn),求得切線的斜率,可得切線的方程,代入點(diǎn)(0,-$\frac{1}{3}$),可得方程有三個(gè)不同的實(shí)數(shù)解,設(shè)g(t)=$\frac{2}{3}$t3-$\frac{1}{2}$at2+$\frac{1}{3}$,求出導(dǎo)數(shù),求出極值,令極大值大于0,極小值小于0,解不等式即可得到所求范圍.
解答 解:(Ⅰ)當(dāng)a=3時(shí),f′(x)=-x2+3x-2=-(x-1)(x-2),
當(dāng)1<x<2時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x<1或x>2時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(1,2),
單調(diào)遞減區(qū)間為(-∞,1)和(2,+∞);
(Ⅱ)設(shè)點(diǎn)A(t,-$\frac{1}{3}$t3+$\frac{a}{2}$t2-2t)是函數(shù)f(x)圖象上的切點(diǎn),
則過(guò)點(diǎn)A的切線斜率k=-t2+at-2,
所以過(guò)點(diǎn)A的切線方程為y+$\frac{1}{3}$t3-$\frac{a}{2}$t2+2t=(-t2+at-2)(x-t),
因?yàn)辄c(diǎn)(0,-$\frac{1}{3}$)在該切線上,
所以-$\frac{1}{3}$+$\frac{1}{3}$t3-$\frac{a}{2}$t2+2t=(-t2+at-2)(0-t),
即$\frac{2}{3}$t3-$\frac{1}{2}$at2+$\frac{1}{3}$=0,
若過(guò)點(diǎn)(0,-$\frac{1}{3}$)可作函數(shù)y=f(x)圖象的三條不同切線,
則方程$\frac{2}{3}$t3-$\frac{1}{2}$at2+$\frac{1}{3}$=0三個(gè)不同的實(shí)數(shù)根,
令g(t)=$\frac{2}{3}$t3-$\frac{1}{2}$at2+$\frac{1}{3}$=0,
則函數(shù)y=g(t)的圖象與x軸有三個(gè)不同的交點(diǎn),
g′(t)=2t2-at=0,解得t=0或t=$\frac{a}{2}$,
因?yàn)間(0)=$\frac{1}{3}$,g($\frac{a}{2}$)=-$\frac{1}{24}$a3+$\frac{1}{3}$,
所以令g($\frac{a}{2}$)=-$\frac{1}{24}$a3+$\frac{1}{3}$<0,即a>2,
所以實(shí)數(shù)a的取值范圍是(2,+∞).
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求單調(diào)區(qū)間、極值,考查函數(shù)方程的轉(zhuǎn)化思想的運(yùn)用,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
有震 | 無(wú)震 | 總計(jì) | |
有變化 | 98 | 902 | 1000 |
無(wú)變化 | 82 | 618 | 700 |
總計(jì) | 180 | 1520 | 1700 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -120 | B. | -26 | C. | 94 | D. | 214 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{1}{2}$,0) | B. | ($\frac{1}{2}$,+∞) | C. | (0,$\frac{1}{2}$) | D. | (-∞,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
類(lèi)別 | 有責(zé)任 | 無(wú)責(zé)任 | 總計(jì) |
有酒精 | 650 | 150 | 800 |
無(wú)酒精 | 700 | 500 | 1200 |
合計(jì) | 1350 | 650 | 2000 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com