6.若函數(shù)f(x)=$\frac{{2x}^{2}-a}{x-1}$(a<2)在區(qū)間(1,+∞)上的最小值為6,則實數(shù)a的值為( 。
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

分析 令t=x-1(t>0),即x=t+1,即有y=$\frac{2(t+1)^{2}-a}{t}$=2t+$\frac{2-a}{t}$+4(2<a),運用基本不等式可得最小值,再解方程即可得到所求a的值.

解答 解:令t=x-1(t>0),即x=t+1,
即有y=$\frac{2(t+1)^{2}-a}{t}$=2t+$\frac{2-a}{t}$+4(2<a),
≥2$\sqrt{2t•\frac{2-a}{t}}$+4=2$\sqrt{2(2-a)}$+4,
當(dāng)且僅當(dāng)2t=$\frac{2-a}{t}$時,取得最小值.
由題意可得2$\sqrt{2(2-a)}$+4=6,
解得a=$\frac{3}{2}$.
故選B.

點評 本題考查已知函數(shù)的最值求參數(shù)的值,注意運用換元法和基本不等式,注意滿足的條件:一正二定三等,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求值:
(Ⅰ)${log_3}\sqrt{27}+lg25+lg4+{7^{{{log}_7}2}}+lg1$;
(Ⅱ)0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{6}$)-2+810.75+($\frac{1}{9}$)0-3-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t-1}\\{y=2t-3}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程ρ=4cosθ.
(1)將參數(shù)方程,極坐標(biāo)方程化為普通方程;
(2)直線與圓是否相交,不相交,說明理由;相交,求出直線1被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.共有4個蘋果和4個袋子,將每個蘋果都隨意裝入某個袋子中,每個蘋果放入的袋子獨立于其它蘋果.
(1)記隨機變量X表示空袋子的數(shù)目,求X的分布列和期望;
(2)將4個袋子分別編號為1,2,3,4號,記1號袋子為空袋的概率為p1,2號袋子為空袋的概率為p2,3號袋子為空袋的概率為p3,4號袋子為空袋的概率為p4,求p1、p2、p3、p4
(3)比較E(X)與p1+p2+p3+p4的大;
(4)不計算E(X)與p1+p2+p3+p4的值,直接解釋它們的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知三點A(1,2),B(3,5),C(5,6),則三角形ABC的面積為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=x2-(3+2a)x+6a,其中a>0.若有實數(shù)b使得$\left\{\begin{array}{l}{f(b)≤0}\\{f{(b}^{2}+1)≤0}\end{array}\right.$成立,則實數(shù)a的取值范圍是(0,$\frac{\sqrt{2}}{2}$]∪[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在如圖所示的四邊形ABCD中,已知AB⊥AD,∠ABC=120°,∠ACD=60°,AD=2$\sqrt{3}$,設(shè)∠ACB=θ,點C到AD的距離為h.
(1)當(dāng)θ=15°,求h的值;
(2)求AB+BC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列判斷錯誤的是( 。
A.“am2<bm2”是“a<b”的充分不必要條件
B.命題“?x∈R,x3-x2≤0”的否定是“?x∈R,x3-x2-1>0”
C.“若a=1,則直線x+y=0和直線x-ay=0互相垂直”的逆否命題為真命題
D.若p∧q為假命題,則p,q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知復(fù)數(shù)z,“z+$\overline{z}$=0”是“z為純虛數(shù)”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案