1.已知三點(diǎn)A(1,2),B(3,5),C(5,6),則三角形ABC的面積為2.

分析 利用三角形面積,向量的模長、向量夾角公式即可得出.

解答 解:∵$\overrightarrow{AB}=({2,3}),\overrightarrow{AC}=({4,4})$,
則$|{\overrightarrow{AB}}|=\sqrt{13},|{\overrightarrow{AC}}|=4\sqrt{2},cosA=\frac{{\overrightarrow{AB}•\overrightarrow{AC}}}{{|{\overrightarrow{AB}}||{\overrightarrow{AC}}|}}=\frac{5}{{\sqrt{26}}}$,
∴$sinA=\frac{1}{{\sqrt{26}}},S=\frac{1}{2}|{\overrightarrow{AB}}||{\overrightarrow{AC}}|sinA=2$.
故答案為:2.

點(diǎn)評 本題考查了三角形面積,向量的模長、向量夾角公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)$a={log_{\frac{1}{2}}}3,b={(\frac{1}{2})^{0.4}},c={3^{\frac{1}{2}}}$則a,b,c的大小關(guān)系是( 。
A.c>b>aB.c>a>bC.b>a>cD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知極坐標(biāo)方程ρ=2cos(θ+$\frac{π}{3}$)和ρ=2cos(θ-$\frac{π}{3}$),求它的直角坐標(biāo)方程,并求與之都外切的圓的圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知曲線方程C:x2+y2-2x-4y+m=0.
(1)當(dāng)m=-6時,求圓心和半徑;
(2)若曲線C表示的圓與直線l:x+2y-4=0相交于M,N,且$|{MN}|=\frac{4}{{\sqrt{5}}}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.兩個同底的正四棱錐內(nèi)接于同一個球,兩個四棱錐側(cè)面與底面形成的角分別為α與β,則tan(α+β)的取值范圍是$({-∞,-2\sqrt{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=$\frac{{2x}^{2}-a}{x-1}$(a<2)在區(qū)間(1,+∞)上的最小值為6,則實(shí)數(shù)a的值為(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知遞增的等差數(shù)列{an}的前三項(xiàng)和為6,前三項(xiàng)的積為6.
(Ⅰ)求等差數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn.記${b_n}=\frac{1}{S_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知曲線f(x)=$\frac{ax}{{e}^{x}+1}$+be-x在點(diǎn)(0,f(0))處的切線方程為x+2y-2=0.
(Ⅰ)求a,b的值;
(Ⅱ)如果當(dāng)x≠0時,都有f(x)>$\frac{x}{{e}^{x}-1}$+ke-x,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=$\sqrt{{x}^{2}-1}$+$\sqrt{a-{x}^{2}}$為偶函數(shù)且非奇函數(shù),則實(shí)數(shù)a的取值范圍為a>1.

查看答案和解析>>

同步練習(xí)冊答案