19.f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x<1}\\{4(x-a)(x-2a),x≥1}\end{array}\right.$,若a=1,則f(x)的最小值為-1.

分析 將a=1代入,結(jié)合二次函數(shù)和指數(shù)函數(shù)的圖象和性質(zhì),求出函數(shù)的值域,可得函數(shù)的最小值.

解答 解:當a=1時,f(x)=$\left\{\begin{array}{l}{2}^{x}-1,x<1\\ 4(x-1)(x-2),x≥1\end{array}\right.$,
當x<1時,f(x)=2x-1∈(-1,1),
當x≥1時,f(x)=4(x-1)(x-2)=4x2-12x+8=4(x-$\frac{3}{2}$)2-1∈[-1,+∞),
故函數(shù)的值域為[-1,+∞),
故函數(shù)的最小值為-1,
故答案為:-1.

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,二次函數(shù)和指數(shù)函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線$\left\{\begin{array}{l}{x=2+5t}\\{y=-1+12t}\end{array}\right.$(t為參數(shù))上對應(yīng)t=0、t=1的兩點間的距離為( 。
A.1B.13C.5D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=mx2+(m-1)x是偶函數(shù),則m的值是( 。
A.1B.-1C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.網(wǎng)上購物逐步走進大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購,大家約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商場購物,且參加者必須從淘寶和京東商城選擇一家購物.
(Ⅰ)求這4人中恰有1人去淘寶網(wǎng)購物的概率;
(Ⅱ)用ξ、η分別表示這4人中去淘寶網(wǎng)和京東商城購物的人數(shù),記X=ξη,求隨機變量X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.比較下列各組數(shù)中值的大。
(1)log23.4<log28.5;
(2)log0.31.8>log0.32.7;
(3)loga5.1,loga5.9當a>1時,loga5.1<loga5.9,當0<a<1時,loga5.1>loga5.9;
(4)1.10.9,log1.10.9,log0.70.81.10.9>log0.70.8>log1.10.9;
(5)log20.4<log30.4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)對于任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)-1成立,且當x>0時f(x)>1恒成立,則f(0)=1;比較f(-2),f(π),f(1)的大小f(-2)<f(1)<f(π).(用<號連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x3+3x2-1.
(1)若函數(shù)y=f(x)在相異兩動點A、B處的切線平行,求證:直線AB恒過一個定點.
(2)在(1)在條件下,若直線AB的斜率為2,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A=[-2,5],B=(-5,0],則A∪B=(-5,5],A∩B=[-2,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用適當集合表示下列圖形中的陰影部分.

(1)(CUA)∩(CUB);(2)CU(A∩B).

查看答案和解析>>

同步練習(xí)冊答案