【題目】已知f(x)是二次函數(shù),若f(0)=0且f(x+1)﹣f(x)=x+1,求函數(shù)f(x)的解析式,并求出它在區(qū)間[﹣1,3]上的最大、最小值.

【答案】解:∵f(0)=0,∴可設(shè)二次函數(shù)f(x)=ax2+bx(a≠0).∵f(x+1)﹣f(x)=x+1,∴a(x+1)2+b(x+1)﹣[ax2+bx]=x+1,
化為(2a﹣1)x+a+b﹣1=0.
此式對(duì)于任意實(shí)數(shù)x恒成立,因此 ,解得


∴函數(shù)f(x)在區(qū)間 上單調(diào)遞減,在區(qū)間 上單調(diào)遞增.
∵f(﹣1)=0, ,f(3)=6.
∴函數(shù)f(x)在區(qū)間[﹣1,3]上的最大、最小值分別為6,
【解析】由于f(0)=0,可設(shè)二次函數(shù)f(x)=ax2+bx(a≠0).利用f(x+1)﹣f(x)=x+1,可得a(x+1)2+b(x+1)﹣[ax2+bx]=x+1,
化為(2a﹣1)x+a+b﹣1=0.此式對(duì)于任意實(shí)數(shù)x恒成立,因此 ,解出即可.通過配方即可得出其單調(diào)性,進(jìn)而得出最值.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式組 表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離小于1的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1.

(1)求證:BC⊥平面PAC;
(2)若M是PC的中點(diǎn),求二面角M﹣AD﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名運(yùn)動(dòng)員參加“選拔測(cè)試賽”,在相同條件下,兩人6次測(cè)試的成績(jī)(單位:分)記錄如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)要從中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰參賽更好?說明理由(不用計(jì)算);

(2)若將頻率視為概率,對(duì)運(yùn)動(dòng)員甲在今后三次測(cè)試成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)高于85分的次數(shù)為,求的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是矩形, ⊥平面, , .

(1)求證: ⊥平面

(2)求二面角余弦值的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線C1 ( t 為參數(shù)),曲線C2 (r>0,θ為參數(shù)).

(1)當(dāng)r=1時(shí),求C 1 與C2的交點(diǎn)坐標(biāo);

(2)點(diǎn)P 為曲線 C2上一動(dòng)點(diǎn),當(dāng)r=時(shí),求點(diǎn)P 到直線C1距離最大時(shí)點(diǎn)P 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,函數(shù) 的定義域?yàn)镸,則RM為(
A.(2,+∞)
B.(﹣∞,2)
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險(xiǎn)種的基本保費(fèi)為(單位:元),繼續(xù)購(gòu)買該險(xiǎn)種的投保人稱為續(xù)保人,

續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

上年度出險(xiǎn)次數(shù)

0

1

2

3

4

保費(fèi)

隨機(jī)調(diào)查了該險(xiǎn)種的400名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

出險(xiǎn)次數(shù)

0

1

2

3

4

頻數(shù)

120

100

60

60

40

20

A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”.的估計(jì)值;

(Ⅱ)B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的190%”.

的估計(jì)值;

(III)求續(xù)保人本年度的平均保費(fèi)估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域是一切實(shí)數(shù),則m的取值范圍是(
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4

查看答案和解析>>

同步練習(xí)冊(cè)答案