3.若函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2,則f(9)=2,g[f(3)]=1,f[f($\frac{1}{9}$)]=0.

分析 由已知中函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2,代入可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,}&{x>0}\\{f(x+3),}&{x≤0}\end{array}\right.$,g(x)=x2
∴f(9)=log39=2,
g[f(3)]=g(log33)=g(1)=12=1,
f[f($\frac{1}{9}$)]=f(${log}_{3}\frac{1}{9}$)=f(-2)=f(1)=log31=0.
故答案為:2;1;0

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的值,難度不大,代入計(jì)算即可,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)m>1,在約束條件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目標(biāo)函數(shù)z=x+my取得最大值z(m)的實(shí)數(shù)對(x,y)=($\frac{1}{m+1}$,$\frac{m}{m+1}$);而當(dāng)m變化時,z(m)的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+x有兩個極值點(diǎn);命題q:函數(shù)g(x)=x${\;}^{{a}^{2}-a}$在(0,+∞)上為增函數(shù),則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,y)且,則$\overrightarrow{a}⊥\overrightarrow$,則|$\overrightarrow$|=( 。
A.$\sqrt{2}$B.$\sqrt{5}$C.2$\sqrt{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“x<1”是“l(fā)og2x<0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足$\frac{a}{sinA}$=$\frac{\sqrt{3}cosB}$.
(Ⅰ)求角B的值;
(Ⅱ)若b=3,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y∈R,則“x>y”是“|x|>|y|”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求實(shí)數(shù)m的范圍,使關(guān)于x的方程x2+2(m-1)x+2m+6=0有兩個實(shí)根,且都比1大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\overrightarrow{m}$=(cosx,sin2x),$\overrightarrow{n}$=(cosx,$\frac{\sqrt{3}}{2}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(Ⅰ)求f(x)的取值范圍;
(Ⅱ)在△ABC中,角A、B、C的對邊分別是a,b,c,若函數(shù)g(x)=bf(x)+c在x=A處取最大值6,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案