4.已知復(fù)數(shù) z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$,$\overline{z}$是z的共軛復(fù)數(shù),則|$\overline{z}$|=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求得$\overline{z}$,再由復(fù)數(shù)模的公式求解.

解答 解:由 z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$=$\frac{\sqrt{3}+i}{-2-2\sqrt{3}i}$=$\frac{(\sqrt{3}+i)(-2+2\sqrt{3}i)}{(-2-2\sqrt{3}i)(-2+2\sqrt{3}i)}$=$\frac{-2\sqrt{3}-2\sqrt{3}+4i}{16}=-\frac{\sqrt{3}}{4}+\frac{1}{4}i$,
∴$\overline{z}=-\frac{\sqrt{3}}{4}-\frac{1}{4}i$,
則$|\overline{z}|=\sqrt{(-\frac{\sqrt{3}}{4})^{2}+(-\frac{1}{4})^{2}}=\frac{1}{2}$.
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了共軛復(fù)數(shù)的概念,考查復(fù)數(shù)模的求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.復(fù)數(shù)$\frac{{{{({1+i})}^2}}}{i^3}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.符號$\sum_{i=1}^n{a_i}$表示數(shù)列{an}的前n項和(即$\sum_{i=1}^n{a_i}={a_1}+{a_2}+…+{a_n}$).已知數(shù)列{an}滿足a1=0,an≤an+1≤an+1(n∈N*),記${S_n}=\sum_{k=1}^n{{{(-1)}^{k-1}}{a^{a_k}}}(0<a<1)$,若S2016=0,則當(dāng)$\sum_{k=1}^{2016}{{a^{a_k}}}$取最小值時,a2016=1007.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.用秦九韶算法計算多項f(x)=3x6+4x5-5x4-6x3+7x2-8x+1時,當(dāng)x=0.4時的值時,需要做乘法和加法的次數(shù)分別是( 。
A.6,6B.5,6C.5,5D.6,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,若$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}=1$,則△ABC的形狀一定是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知△ABC的三頂點分別是A(-2,2),B(1,4),C(5,-2),求它的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知圓C的圓心在直線x-y+1=0與x軸的交點,且圓C與圓(x-2)2+(y-3)2=8相外切,若過點P(-1,1)的直線l與圓C交于A、B兩點,當(dāng)∠ACB最小時,直線l的方程為y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}的前n項和為${S_n}=\frac{2}{3}{a_n}+1$,則{an}的通項公式是an=3•(-2)n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)f(x)=$\left\{\begin{array}{l}{x,x∈(-∞,a)}\\{{x}^{2},x∈[a,+∞)}\end{array}\right.$,若f(2)=4,則a的取值范圍為a≤2.

查看答案和解析>>

同步練習(xí)冊答案