Loading [MathJax]/jax/output/CommonHTML/jax.js
19.在△ABC中,若sin2A+sin2Bsin2C=1,則△ABC的形狀一定是直角三角形.

分析 利用正弦定理化簡即可判斷出結(jié)論.

解答 解:∵sin2A+sin2Bsin2C=1,由正弦定理可得:a2+b2=c2,∴C=Rt∠.
則△ABC的形狀一定是直角三角形.
故答案為:直角三角形.

點評 本題考查了正弦定理、勾股定理的逆定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在墻上掛著一塊邊長為16cm的正方形木板,上面畫了大、小兩個同心圓,半徑分別為2cm,6cm,某人站在3m之外向此板投鏢,設(shè)投鏢擊中線上或沒有投中木板時都不算(可重投),問:
(1)投中大圓內(nèi)的概率是多少?
(2)投中小圓與大圓形成的圓環(huán)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.111x2-1)dx=π2-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.以下四個命題中:
①在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模擬的擬合效果越好;
②兩個隨機變量的線性相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近于1;
③對分類變量x與y的隨機變量k2的觀測值k來說,k越小,判斷“x與y無關(guān)系”的把握程度越大;
④對分類變量x與y的隨機變量k2的觀測值k來說,k越小,判斷“x與y有關(guān)系”的把握程度越大.
其中真命題的個數(shù)為( �。�
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.原始社會時期,人們通過在繩子上打結(jié)來計算數(shù)量,即“結(jié)繩計數(shù)”.當時有位父親,為了準確記錄孩子的成長天數(shù),在粗細不同的繩子上打結(jié),由細到粗,滿七進一,那么孩子已經(jīng)出生510天.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知復數(shù) z=3+i13i2,¯z是z的共軛復數(shù),則|¯z|=( �。�
A.14B.12C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.計算定積分:π20(x+sinx)dx=π28+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在銳角△ABC中,已知∠A,∠B,∠C成等差數(shù)列,設(shè)y=sinA-cos(A-C+2B),則y的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在平面直角坐標系xOy中,已知橢圓C:x2a2+y22=1(a>b>0)的離心率為223,經(jīng)過橢圓的左頂點A(-3,0)作斜率為k(k≠0)的直線l交橢圓C于點D,交軸于點E
(1)求橢圓C的方程;
(2)已知點P為線段AD的中點,是否存在定點Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�