分析 (1)可設(shè)x<0,-x>0,帶入x∈(0,+∞)上的解析式便可得出f(-x)=log2(-x)=-f(x),從而得出$f(x)=\left\{\begin{array}{l}{lo{g}_{2}x}&{x>0}\\{-lo{g}_{2}(-x)}&{x<0}\end{array}\right.$;
(2)分x>0和x<0,根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性解不等式f(x)>0,所得解求并集即可得出x的取值范圍.
解答 解:(1)設(shè)x<0,-x>0;
∴f(-x)=log2(-x)=-f(x);
∴f(x)=-log2(-x);
∴$f(x)=\left\{\begin{array}{l}{lo{g}_{2}x}&{x>0}\\{-lo{g}_{2}(-x)}&{x<0}\end{array}\right.$;
(2)①x>0時(shí),由f(x)>0得,log2x>0;
∴x>1;
②x<0時(shí),由f(x)>0得,-log2(-x)>0;
∴l(xiāng)og2(-x)<0;
∴0<-x<1;
∴-1<x<0;
∴x的取值范圍為(-1,0)∪(1,+∞).
點(diǎn)評(píng) 考查奇函數(shù)的定義,奇函數(shù)已知一曲間上的解析式,求對(duì)稱區(qū)間上的解析式的方法,以及對(duì)數(shù)函數(shù)的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{18}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com