分析 ( I)由條件可得 2cos$\frac{C}{2}$=1+sin$\frac{C}{2}$,平方利用二倍角公式可得 1+5cosC=4$\sqrt{\frac{1-cosC}{2}}$,平方化簡求得cosC的值,可得sinC的值.
( II)由條件可得(a-2)2+(b-2)2=0,求得 a=b=2,再利用余弦定理求得c的值.
解答 解:( I)△ABC中,∵2cos$\frac{C}{2}$-sin$\frac{C}{2}$+1=0,
∴2cos$\frac{C}{2}$=1+sin$\frac{C}{2}$,
∴4${cos}^{2}\frac{C}{2}$=1+2sin$\frac{C}{2}$+${sin}^{2}\frac{C}{2}$,
即 4•$\frac{1+cosC}{2}$=1+2•$\sqrt{\frac{1-cosC}{2}}$+$\frac{1-cosC}{2}$,
即 $\frac{1}{2}$+$\frac{5}{2}$cosC=2$\sqrt{\frac{1-cosC}{2}}$,
即 1+5cosC=4$\sqrt{\frac{1-cosC}{2}}$,
平方可得1+25cos2C+10cosC=16•$\frac{1-cosC}{2}$,
求得cosC=-1(舍去),或cosC=$\frac{6}{25}$,
∴sinC=$\sqrt{{1-cos}^{2}C}$=$\frac{\sqrt{589}}{25}$.
( II)若a2+b2=4(a+b)-8,
∴(a-2)2+(b-2)2=0,
∴a=b=2.
∴c=$\sqrt{{a}^{2}{+b}^{2}-2ab•cosC}$=$\sqrt{4+4-8•\frac{6}{25}}$=$\frac{2\sqrt{38}}{5}$.
點(diǎn)評 本題考查三角函數(shù)的二倍角公式、同角三角函數(shù)的平方關(guān)系,考查三角形中的余弦定理,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com