12.已知i是虛數(shù)單位,z1=x+yi(x,y∈R),且x2+y2=1,z2=(3+4i)z1+(3-4i)$\overline{z_1}$.
( I) 求證:z2∈R;
( II)求z2的最大值和最小值.

分析 (Ⅰ)求出z1的共軛復(fù)數(shù),再代入計(jì)算即可證明,
(Ⅱ)設(shè)u=6x-8y,代入x2+y2=1消去y得,根據(jù)判別式法即可求出.

解答 解:(Ⅰ)證明∵z1=x+yi,$\overline{z}$1=x-yi(x,y∈R),
∴z1+$\overline{z}$1=2x,z1-$\overline{z}$1=2yi.
∴z2=(3+4i)z1+(3-4i)1,
=3(z1+$\overline{{z}_{1}}$)+4i(z1-$\overline{z}$1).
=6x+8yi2=(6x-8y)∈R
(Ⅱ)解∵x2+y2=1,
設(shè)u=6x-8y,代入x2+y2=1消去y得
64x2+(6x-u)2=64.
∴100x2-12ux+u2-64=0.
∵x∈R,∴△≥0.
∴144u2-4×100(u2-64)≥0.
∴u2-100≤0.
∴-10≤u≤10.
∴z2的最大值是10,最小值是-10

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則和利用判別式法求函數(shù)的最值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.甲、乙兩人在罰球線投球命中的概率分別為$\frac{1}{2}$與$\frac{2}{5}$.
(1)若甲、乙兩人在罰球線各投球一次,求恰好命中一次的概率;
(2)若甲、乙兩人在罰球線各投球兩次,求這四次投球中至少一次命中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知向量$\overrightarrow a$=(4,3),$\overrightarrow b$=(1,-1).
(1)求$\overrightarrow a$與$\overrightarrow b$的夾角的余弦值;
(2)若向量3$\overrightarrow a$+4$\overrightarrow b$與λ$\overrightarrow a$-$\overrightarrow b$平行,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.甲、乙兩支籃球隊(duì)賽季總決賽采用7場(chǎng)4勝制,每場(chǎng)必須分出勝負(fù),場(chǎng)與場(chǎng)之間互不影響,只要有一對(duì)獲勝4場(chǎng)就結(jié)束比賽.現(xiàn)已比賽了4場(chǎng),且甲籃球隊(duì)勝3場(chǎng),已知甲球隊(duì)第5,6場(chǎng)獲勝的概率均為$\frac{3}{5}$,但由于體力原因,第7場(chǎng)獲勝的概率為$\frac{2}{5}$.
(1)求甲對(duì)以4:3獲勝的概率;
(2)設(shè)X表示決出冠軍時(shí)比賽的場(chǎng)數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,若sinA:sinB:sinC=1:$\sqrt{7}$:3,則∠B的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.己知函數(shù)f(x)=ax2+bx+1(a>0)
(1)?x∈R,函數(shù)f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)有最大值1,求函數(shù)f($\frac{2{x}^{2}+3}{{x}^{2}+1}$)的單調(diào)區(qū)間;
(2)已知?x0∈R,使|f(x0)|≤$\frac{1}{a}$與|f(x0+$\frac{2}{a}$)|≤$\frac{1}{a}$同時(shí)成立,求b2-4a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖1,已知四邊形ABFD為直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$為等邊三角形,AD=DF=2AF=2,C為DF的質(zhì)點(diǎn),如圖2,將平面AED、BCF分別沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,連接EF、DF,設(shè)G為AE上任意一點(diǎn).
(1)證明:DG∥平面BCF;
(2)求平面DEF與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在正方體ABCD-A1B1C1D1中,BA1與平面AA1C1C所成的角等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)三個(gè)互不相等的數(shù)a,b,c成等比數(shù)列(a<b<c).其積為27,又a,b,c-4成等差數(shù)列,求a,b,c的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案