12.閱讀如圖的程序框圖,運行相應(yīng)的程序,輸出的結(jié)果為$\frac{13}{8}$.

分析 利用程序框圖,逐步計算運行后的結(jié)果,判斷求解即可.

解答 解:由程序運算可知第一次運算后z=2,y=2,x=1,
第二次運算后z=3,y=3,x=2,
第三次運算后z=5,y=5,x=3,
第四次運算后z=8,y=8,x=5,
第五次運算后z=13,y=13,x=8,
這時再運算z=21>20,
輸出$\frac{y}{x}=\frac{13}{8}$.
故答案為:$\frac{13}{8}$.

點評 本題考查程序框圖的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知P是復(fù)平面內(nèi)表示復(fù)數(shù)a+bi(a、b∈R)的點,分別指出在下列條件下點P的位置:
(1)a>0,b>0;
(2)a<0,b>0;
(3)a=0,b≤0;
(4)b<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若復(fù)數(shù)z=$\frac{1-i}{\sqrt{2}}$,則z100+z50+1在復(fù)平面上所對應(yīng)的點位于y軸的負(fù)半軸上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若實數(shù)x,y滿足$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{y-3x+1≥0}\end{array}}\right.$,則z=x-2y的最大值是(  )
A.-3B.$\frac{3}{2}$C.$\frac{3}{4}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在區(qū)間(2kπ+$\frac{π}{2}$,2kπ+π),k∈Z上存在零點的函數(shù)是( 。
A.y=sin2xB.y=cos2xC.y=tan2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)=2exsinx,則函數(shù)f(x)在點(0,f(0))處的切線方程為(  )
A.y=0B.y=2xC.y=xD.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=1-a|x|(a>0,a≠1)的圖象如圖所示,則函數(shù)g(x)=$\frac{lo{g}_{a}|x|}{x}$的圖象為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x,y滿足區(qū)域 D:$\left\{\begin{array}{l}x+y-3≤0\\ 2x+y-2≥0\\ x-y-1≤0\end{array}$,給出下面4個命題:
p1:?x,y∈D,2x-y≥2
p2:?x,y∈D,2x-y≤2
p3:?x,y∈D,$\frac{y+1}{x+2}<\frac{1}{3}$
p4:?x,y∈D,$\frac{y+1}{x+2}≥\frac{1}{3}$,
其中真命題是( 。
A.p1,p3B.p2,p3C.p1,p4D.p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角ϕ的終邊經(jīng)過點P(-4,3),函數(shù)f(x)=sin(ωx+ϕ)(ω>0)的圖象的相鄰兩條對稱軸之間的距離等于$\frac{π}{2}$,則f($\frac{π}{4}$)的值為( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

同步練習(xí)冊答案