20.經(jīng)過(guò)原點(diǎn)且與曲線y=$\frac{x+9}{x+5}$相切的方程是( 。
A.x+y=0或$\frac{x}{25}$+y=0B.x-y=0或$\frac{x}{25}$+y=0C.x+y=0或$\frac{x}{25}$-y=0D.x-y=0或$\frac{x}{25}$-y=0

分析 設(shè)切點(diǎn)為(m,n),求出函數(shù)的導(dǎo)數(shù),可得切線的斜率和切線方程,代入原點(diǎn),解方程可得m=-3或-15,即有切線的方程.

解答 解:設(shè)切點(diǎn)為(m,n),
y=$\frac{x+9}{x+5}$的導(dǎo)數(shù)為y′=-$\frac{4}{(x+5)^{2}}$,
可得切線的斜率為k=-$\frac{4}{(5+m)^{2}}$,
切線的方程為y-$\frac{m+9}{m+5}$=-$\frac{4}{(5+m)^{2}}$(x-m),
代入原點(diǎn)(0,0),可得-$\frac{m+9}{m+5}$=-$\frac{4}{(5+m)^{2}}$•(-m),
解得m=-3或-15.
則切線的方程為y=-x或y=-$\frac{1}{25}$x.
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程,考查導(dǎo)數(shù)的幾何意義,設(shè)出切點(diǎn)和正確求導(dǎo)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax-ln(x+1),g(x)=ex-x-1.曲線y=f(x)與y=g(x)在原點(diǎn)處的切線相同
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若x≥0時(shí),g(x)≥kf(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的外接球的表面積為( 。
A.24πB.36πC.48πD.54π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.有下列命題:
①乘積(a+b+c+d)(p+q+r)(m+n)展開(kāi)式的項(xiàng)數(shù)是24;
②由1、2、3、4、5組成沒(méi)有重復(fù)數(shù)字且1、2都不與5相鄰的五位數(shù)的個(gè)數(shù)是36;
③某會(huì)議室第一排共有8個(gè)座位,現(xiàn)有3人就座,若要求每人左右均有空位,那么不同的坐法種數(shù)為24;
④已知(1+x)8=a0+a1x+…+a8x8,其中a0,a1,…,a8中奇數(shù)的個(gè)數(shù)為2.
其中真命題的序號(hào)是①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$\overrightarrow{e_1}$,$\overrightarrow{e_2}$不共線,$\overrightarrow a$=$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$,$\overrightarrow b$=2$\overrightarrow{e_1}$+λ$\overrightarrow{e_2}$,要使$\overrightarrow a$,$\overrightarrow b$作為平面內(nèi)所有向量的一組基底,則實(shí)數(shù)λ的取值范圍是(-∞,4)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的離心率為$\sqrt{3}$,則該雙曲線的漸近線方程為(  )
A.y=±$\frac{1}{2}$xB.y=±$\frac{\sqrt{2}}{2}$xC.y=±$\sqrt{2}$xD.y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.向量($\overrightarrow{AB}$+$\overrightarrow{PB}$)+($\overrightarrow{BO}$+$\overrightarrow{BM}$)+$\overrightarrow{OP}$化簡(jiǎn)后等于( 。
A.$\overrightarrow{BC}$B.$\overrightarrow{AB}$C.$\overrightarrow{AC}$D.$\overrightarrow{AM}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知△ABC的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(8,2);
(1)求AB邊的中線所在直線方程.
(2)求AC的中垂線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若變量x,y滿足$\left\{\begin{array}{l}x-y+3≥0\\ x+y+1≥0\\ x≤1\end{array}\right.$,且z=2x+y-1的最大值為5.

查看答案和解析>>

同步練習(xí)冊(cè)答案