【題目】已知點(diǎn)P在直線x+3y﹣2=0上,點(diǎn)Q在直線x+3y+6=0上,線段PQ的中點(diǎn)為M(x0 , y0),且y0<x0+2,則 的取值范圍是(
A.[﹣ ,0)
B.(﹣ ,0)??
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)

【答案】D
【解析】解:∵點(diǎn)P在直線x+3y﹣2=0上,點(diǎn)Q在直線x+3y+6=0上,線段PQ的中點(diǎn)為M(x0 , y0), ∴ ,化為x0+3y0+2=0.
又y0<x0+2,
設(shè) =kOM ,
當(dāng)點(diǎn)位于線段AB(不包括端點(diǎn))時,則kOM>0,當(dāng)點(diǎn)位于射線BM(不包括端點(diǎn)B)時,kOM<﹣
的取值范圍是(﹣∞,﹣ )∪(0,+∞).
故選:D.

由題意可得,線段PQ的中點(diǎn)為M(x0 , y0)到兩直線的距離相等,利用 ,可得x0+3y0+2=0.
又y0<x0+2,設(shè) =kOM , 分類討論:當(dāng)點(diǎn)位于線段AB(不包括端點(diǎn))時,當(dāng)點(diǎn)位于射線BM(不包括端點(diǎn)B)時,即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對學(xué)生的期末復(fù)習(xí)有著重要的影響,我校隨機(jī)抽取100名學(xué)生,對學(xué)習(xí)成績和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示:

已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.

參考公式:,其中

(1)請將上表補(bǔ)充完整(不用寫計(jì)算過程);

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與對待學(xué)案的使用態(tài)度有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義域?yàn)?/span>的函數(shù)的導(dǎo)函數(shù),,,則的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)M(﹣3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)N在直線PQ上,且滿足 . (Ⅰ)當(dāng)點(diǎn)P在y軸上移動時,求點(diǎn)N的軌跡C的方程;
(Ⅱ)過點(diǎn) 做直線l與軌跡C交于A,B兩點(diǎn),若在x軸上存在一點(diǎn)E(x0 , 0),使得△AEB是以點(diǎn)E為直角頂點(diǎn)的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱柱的底面ABCD為矩形,AB=1,AD=2,,,則的長為( )

A. B.  C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機(jī)產(chǎn)生 (I)分別求出按程序框圖正確編程運(yùn)行時輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編程寫出程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄輸出y的值為i(i=1,2,3)的頻數(shù),以下是甲乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)圖(部分)

運(yùn)行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

14

6

10

2100

1027

376

697

乙的頻數(shù)統(tǒng)計(jì)圖(部分)

運(yùn)行次數(shù)n

輸出y的值為1的頻數(shù)

輸出y的值為2的頻數(shù)

輸出y的值為3的頻數(shù)

30

12

11

7

2100

1051

696

353

當(dāng)n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合要求的可能系較大;
(III)將按程序擺圖正確編寫的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正項(xiàng)等比數(shù)列{an}和正項(xiàng)等差數(shù)列{bn}中,已知a1 , a2017的等比中項(xiàng)與b1 , b2017的等差中項(xiàng)相等,且 + ≤1,當(dāng)a1009取得最小值時,等差數(shù)列{bn}的公差d的取值集合為(
A.{d|d≥ }
B.{d|0<d< }
C.{ }
D.{d|d≥ }

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ﹣2sinθ.
(1)求C的參數(shù)方程;
(2)若點(diǎn)A在圓C上,點(diǎn)B(3,0),求AB中點(diǎn)P到原點(diǎn)O的距離平方的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南宋時期的數(shù)學(xué)家秦九韶在他的著作《數(shù)書九章》中提出了計(jì)算多項(xiàng)式f(x)=anxn+an1xn1+…+a1x+a0的值的秦九韶算法,即將f(x)改寫成如下形式:f(x)=(…((anx+an1)x+an2)x+…+a1)x+a0 , 首先計(jì)算最內(nèi)層一次多項(xiàng)式的值,然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,這種算法至今仍是比較先進(jìn)的算法,將秦九韶算法用程序框圖表示如圖,則在空白的執(zhí)行框內(nèi)應(yīng)填入(
A.v=vx+ai
B.v=v(x+ai
C.v=aix+v
D.v=ai(x+v)

查看答案和解析>>

同步練習(xí)冊答案