9.如圖所示的程序框圖,輸出S的值為( 。
A.$\frac{{{2^{99}}-2}}{3}$B.$\frac{{{2^{100}}-2}}{3}$C.$\frac{{{2^{101}}-2}}{3}$D.$\frac{{{2^{102}}-2}}{3}$

分析 題目給出了當(dāng)型循環(huán)結(jié)構(gòu)框圖,首先引入累加變量s和循環(huán)變量n,由判斷框得知,算法執(zhí)行的是求2ncosnπ的和,n從1取到100,利用等比數(shù)列求和公式即可計(jì)算得解.

解答 解:通過分析知該算法是求和2cosπ+22cos2π+23cos3π+…+2100cos100π,
由于2cosπ+22cos2π+23cos3π+…+2100cos100π=-2+22-23+24-…+2100=$\frac{-2-(-2)×{2}^{100}}{1-(-2)}$=$\frac{{2}^{101}-2}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了程序框圖中的當(dāng)型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)結(jié)構(gòu)是先判斷再執(zhí)行,若滿足條件進(jìn)入循環(huán),否則結(jié)束循環(huán),循環(huán)結(jié)構(gòu)主要用在一些規(guī)律的重復(fù)計(jì)算,如累加、累積等,在循環(huán)結(jié)構(gòu)中框圖中,特別要注意條件應(yīng)用,如計(jì)數(shù)變量和累加變量等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若x在第三象限,化簡(jiǎn)$\sqrt{{(1+tanx)}^{2}{+(1-tanx)}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖甲:⊙O的直徑AB=2,圓上兩點(diǎn)C,D在直徑AB的兩側(cè),使∠CAB=$\frac{π}{4}$,∠DAB=$\frac{π}{3}$,沿直徑AB折起,使兩個(gè)半圓所在的平面互相垂直(如圖乙),F(xiàn)為BC的中點(diǎn),根據(jù)圖乙解答下列各題:
(Ⅰ)若點(diǎn)G是$\widehat{BD}$的中點(diǎn),證明:FG∥平面ACD;
(Ⅱ)求平面ACD與平面BCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為4π,且對(duì)?x∈R,有f(x)≤f($\frac{π}{3}$)成立,則f(x)的一個(gè)對(duì)稱中心坐標(biāo)是( 。
A.(-$\frac{2π}{3}$,0)B.(-$\frac{π}{3}$,0)C.($\frac{2π}{3}$,0)D.($\frac{5π}{3}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在公差不為零的等差數(shù)列{an}中,其前n項(xiàng)和為Sn,已知a3=5,且a1,a2,a5成等比數(shù)列.
(Ⅰ)求an和Sn;
(Ⅱ)記${T_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{a{\;}_2{a_3}}}+…\frac{1}{{{a_n}{a_{n+1}}}}$,若${T_n}≥\frac{9}{{{S_{n+k}}}}$對(duì)任意正整數(shù)n恒成立,求正整數(shù)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD中,底面ABCD是菱形,∠ADC=60°,面PCD⊥面ABCD,PC=PD=CD=2,點(diǎn)M為線段PB上異于P、B的點(diǎn).
(Ⅰ)當(dāng)點(diǎn)M為PB的中點(diǎn)時(shí),求證:PD∥平面ACM
(Ⅱ)當(dāng)二面角B-AC-M的余弦值為$\frac{\sqrt{5}}{5}$時(shí),試確定點(diǎn)M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知正方體ABCD-A1B1C1D1,點(diǎn)E為棱AA1的中點(diǎn),則異面直線B1D1與DE所成角的大小是arccos$\frac{\sqrt{10}}{5}$(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右頂點(diǎn)分別為A,B,右焦點(diǎn)為F,離心率$e=\frac{1}{2}$,點(diǎn)P是橢圓C上異于A,B兩點(diǎn)的動(dòng)點(diǎn),△APB的面積最大值為$2\sqrt{3}$.
(1)求橢圓C的方程;
(2)若直線AP與直線x=2交于點(diǎn)D,試判斷以BD為直徑的圓與直線PF的位置關(guān)系,并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在△ABC中,已知$∠BAC=\frac{π}{3}$,AB=2,AC=4,點(diǎn)D為邊BC上一點(diǎn),滿足$\overrightarrow{AC}$+2$\overrightarrow{AB}$=3$\overrightarrow{AD}$,點(diǎn)E是AD上一點(diǎn),滿足$\overrightarrow{AE}$=2$\overrightarrow{ED}$,則BE=$\frac{2\sqrt{21}}{9}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案