lim
x→0
1-
1-x2
ex-cosx
=
 
考點(diǎn):極限及其運(yùn)算
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用函數(shù)極限的運(yùn)算法則、“羅比達(dá)法則”即可得出.
解答: 解:原式=
lim
x→0
x
1-x2
ex+sinx
=0.
故答案為:0.
點(diǎn)評(píng):本題考查了函數(shù)極限的運(yùn)算法則、“羅比達(dá)法則”,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題
①y=1是冪函數(shù);
②函數(shù)f(x)=2x-x2的零點(diǎn)有2個(gè);
(x+
1
x
+2)5
展開(kāi)式的常數(shù)項(xiàng)是252;
④函數(shù)y=sinx x∈[-π,π]的圖象與x軸圍成的圖形面積是S=∫-xxsinxdx;
⑤若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2,
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若對(duì)任意x∈[0,5],不等式1+
m
4
x≤
2
4+x
≤1+
n
5
x恒成立,則一定有( 。
A、m≤
1
2
,n≥-
1
3
B、m≤-
1
2
,n≥-
1
3
C、m≤-
1
2
,n≥
1
3
D、m<-
1
2
,n>-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為二次函數(shù),且滿足f(1)=1,f(x)有兩個(gè)零點(diǎn)為0和2,設(shè)F(x)=
f(x),x≥0
f(-x),x<0

(1)求函數(shù)f(x)和F(x)的解析式;
(2)在答卷給定的坐標(biāo)系中畫出函數(shù)F(x)的圖象;(不需列表)
(3)根據(jù)圖象討論關(guān)于x的方程F(x)-k=0(k∈R)根的個(gè)數(shù)(只需寫出結(jié)果,不要解答過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在右圖的正方形中隨機(jī)撒一粒黃豆,則它落到陰影部分的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

lim
x→0
arctanx-x
ln(1+2x3)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,0),
b
=(x,
3-(x-2)2
),設(shè)
a
b
的夾角為θ,則cosθ的值域?yàn)椋ā 。?/div>
A、[
1
2
,1]
B、[0,
1
2
]
C、[0,
3
2
]
D、[
3
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
x
-x3的單調(diào)區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{xn}滿足x1>0,xn+1=
3(1+xn)
3+xn
,n=1,2,3…那么( 。
A、數(shù)列{xn}是單調(diào)遞增數(shù)列
B、數(shù)列{xn}是單調(diào)遞減數(shù)列
C、數(shù)列{xn}或是單調(diào)遞增數(shù)列,或是單調(diào)遞減數(shù)列
D、數(shù)列{xn}既非單調(diào)遞增數(shù)列,也非單調(diào)遞減數(shù)列

查看答案和解析>>

同步練習(xí)冊(cè)答案