7.拋物線y2=12x的準(zhǔn)線方程為x=-3.

分析 由拋物線y2=2px的準(zhǔn)線為x=-$\frac{p}{2}$,即可求得拋物線y2=12x的準(zhǔn)線方程.

解答 解:由拋物線y2=2px的準(zhǔn)線為x=-$\frac{p}{2}$,
可得拋物線y2=12x的準(zhǔn)線方程為x=-3.
故答案為:x=-3.

點(diǎn)評 本題考查拋物線的方程和性質(zhì),主要考查拋物線的準(zhǔn)線方程的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上正方形小格的邊長為1(表示1cm),圖中粗線畫出的是某零件的三視圖,該零件由一個底面半徑為3cm,高為6cm的圓柱體毛坯切削得到,則零件的體積與原來毛坯體積的比值為( 。
A.$\frac{10}{27}$B.$\frac{17}{27}$C.$\frac{2}{3}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.拋物線x2=-8y的準(zhǔn)線方程為y=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線x2=-$\frac{1}{4}$y的焦點(diǎn)坐標(biāo)為( 。
A.(-$\frac{1}{8}$,0)B.(0,-$\frac{1}{8}$)C.(0,-$\frac{1}{16}$)D.(-$\frac{1}{16}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線l1:4x-3y+12=0和直線l2:x=-1,則拋物線y2=4x上一動點(diǎn)P到直線l1和直線l2的距離之和的最小值是$\frac{16}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線平行于y軸,且經(jīng)過點(diǎn)(3,-2$\sqrt{6}$).
(1)求拋物線的方程;
(2)求拋物線被直線2x-y-3=0所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線y2=4$\sqrt{2}$x的交點(diǎn)為橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的右焦點(diǎn),且橢圓的長軸長為4,左右頂點(diǎn)分別為A,B,經(jīng)過橢圓左焦點(diǎn)的直線l與橢圓交于C,D(異于A,B)兩點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)求四邊形ADBC的面積的最大值;
(3)若M(x1,y1)N(x2,y2)是橢圓上的兩動點(diǎn),且滿x1x2+2y1y2=0,動點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OM}+2\overrightarrow{ON}$(其中O為坐標(biāo)原點(diǎn)),是否存在兩定點(diǎn)F1,F(xiàn)2使得|PF1|+|PF2|為定值,若存在求出該定值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知a=$\frac{1}{2}$${∫}_{1}^{2}$$\frac{1}{x}$dx,b=$\frac{1}{3}$${∫}_{1}^{3}$$\frac{1}{x}$dx,c=$\frac{1}{5}$${∫}_{1}^{5}$$\frac{1}{x}$dx,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-mx2,g(x)=$\frac{1}{2}m{x}^{2}$+x,m∈R令F(x)=f(x)+g(x).
(Ⅰ)當(dāng)m=$\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx-1恒成立,求整數(shù)m的最小值;
(Ⅲ)若m=-2,正實(shí)數(shù)x1,x2滿足F(x1)+F(x2)+x1x2=0,證明:x1+x2$≥\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案