2.已知直線l1:4x-3y+12=0和直線l2:x=-1,則拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是$\frac{16}{5}$.

分析 如圖所示,過點(diǎn)F(1,0)作FQ⊥l1,交拋物線于點(diǎn)P,垂足為Q,過點(diǎn)P作PM⊥l2,垂足為M.則|PF|=|PM|,可知:|FQ是|拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值.

解答 解:如圖所示,
過點(diǎn)F(1,0)作FQ⊥l1,交拋物線于點(diǎn)P,垂足為Q,過點(diǎn)P作PM⊥l2,垂足為M.
則|PF|=|PM|,可知:|FQ是|拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值.
|FQ|=$\frac{|4×1-0+12|}{\sqrt{{4}^{2}+(-3)^{2}}}$=$\frac{16}{5}$.
故答案為:$\frac{16}{5}$.

點(diǎn)評(píng) 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知8個(gè)非零實(shí)數(shù)a1,a2,a3,a4,a5,a6,a7,a8,向量$\overrightarrow{O{A_1}}=({a_1},\;{a_2})$,$\overrightarrow{O{A_2}}=({a_3},\;{a_4})$,$\overrightarrow{O{A_3}}=({a_5},\;{a_6})$,$\overrightarrow{O{A_4}}=({a_7},\;{a_8})$,給出下列命題:
①若a1,a2,…,a8為等差數(shù)列,則存在i,j(1≤i,j≤8,i≠j,i,j∈N*),使$\overrightarrow{O{A_1}}$+$\overrightarrow{O{A_2}}$+$\overrightarrow{O{A_3}}$+$\overrightarrow{O{A_4}}$與向量$\overrightarrow{n}$=(ai,aj)共線;
②若a1,a2,…,a8為公差不為0的等差數(shù)列,向量$\overrightarrow{n}$=(ai,aj)(1≤i,j≤8,i≠j,i,j∈N*),$\overrightarrow{q}$=(1,1),M={y|y=$\overrightarrow{n}$•$\overrightarrow{q}$},則集合M的元素有12個(gè);
③若a1,a2,…,a8為等比數(shù)列,則對(duì)任意i,j(1≤i,j≤4,i,j∈N*),都有$\overrightarrow{O{A_i}}$∥$\overrightarrow{O{A_j}}$;
④若a1,a2,…,a8為等比數(shù)列,則存在i,j(1≤i,j≤4,i,j∈N*),使$\overrightarrow{O{A_i}}$•$\overrightarrow{O{A_j}}$<0;
⑤若$\overrightarrow{m}$=$\overrightarrow{O{A_i}}$•$\overrightarrow{O{A_j}}$(1≤i,j≤4,i≠j,i,j∈N*),則$\overrightarrow{m}$的值中至少有一個(gè)不小于0.
其中所有真命題的序號(hào)是①③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知點(diǎn)F為拋物線C:y2=2px(p>0)的焦點(diǎn),M(4,t)為拋物線C上的點(diǎn),且|MF|=5,則拋物線C的方程為( 。
A.y2=xB.y2=2xC.y2=4xD.y2=8x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A點(diǎn)在拋物線上,且A的橫坐標(biāo)為4,|AF|=5.
(1)求拋物線的方程;
(2)設(shè)l為過(4,0)點(diǎn)的任意一條直線,若l交拋物線于A,B兩點(diǎn),求證:以AB為直徑的圓必過坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.過拋物線y2=4x的焦點(diǎn)且斜率為1的直線交該拋物線于A、B兩點(diǎn),則|AB|=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.拋物線y2=12x的準(zhǔn)線方程為x=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.過拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),若x1+x2=10,則弦AB的長(zhǎng)為( 。
A.16B.14C.12D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=sinωx(ω>0)在區(qū)間[$-\frac{π}{3},\frac{π}{4}$]上的最小值是-1,則ω的最小值為( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定φ(A,B)=$\frac{|{k}_{A}-{k}_{B}|}{|AB|}$叫做曲線y=f(x)在點(diǎn)A與點(diǎn)B之間的“彎曲度”,給出以下命題:
①函數(shù)y=x3-x2+1圖象上兩點(diǎn)A與B的橫坐標(biāo)分別為1,2,則φ(A,B)>$\sqrt{3}$;
②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
③設(shè)點(diǎn)A、B是拋物線y=x2+1上不同的兩點(diǎn),則φ(A,B)≤2;
④設(shè)曲線y=ex上不同兩點(diǎn)A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<1恒成立,則實(shí)數(shù)t 的取值范圍是(-∞,1).以上正確命題的序號(hào)為( 。
A.①②B.②③C.③④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案