17.已知雙曲線M:x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1與雙曲線的一條漸近線平行的直線與另一條漸近線交于點(diǎn)P,若點(diǎn)P在以原點(diǎn)為圓心,雙曲線M的虛軸長為半徑的圓內(nèi),則b2的取值范圍是(  )
A.(7+4$\sqrt{3}$,+∞)B.(7-4$\sqrt{3}$,+∞)C.(7-4$\sqrt{3}$,7+4$\sqrt{3}$)D.(0,7-4$\sqrt{3}$)∪(7+4$\sqrt{3}$,+∞)

分析 根據(jù)雙曲線漸近線的方程求出交點(diǎn)P的坐標(biāo),結(jié)合點(diǎn)與圓的關(guān)系建立不等式關(guān)系進(jìn)行求解即可.

解答 解:過F1(-c,0)且與漸近線y=bx平行的直線為y=b(x+c),
與另外一條漸近線y=-bx聯(lián)立得$\left\{\begin{array}{l}{y=b(x+c)}\\{y=-bx}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-\frac{c}{2}}\\{y=\frac{bc}{2}}\end{array}\right.$,即P(-$\frac{c}{2}$,$\frac{bc}{2}$),
以原點(diǎn)為圓心,雙曲線M的虛軸長為半徑的圓的方程為x2+y2=4b2
∴(-$\frac{c}{2}$)2+($\frac{bc}{2}$)2<4b2,即c2+b2c2<16b2,
把c2=b2+1代入并整理得b4-14b2+1<0,
得7-4$\sqrt{3}$<b2<7+4$\sqrt{3}$,
即b2的取值范圍是(7-4$\sqrt{3}$,7+4$\sqrt{3}$),
故選:C

點(diǎn)評 本題主要考查雙曲線的方程和性質(zhì),根據(jù)漸近線方程求出交點(diǎn)坐標(biāo),結(jié)合點(diǎn)與圓的位置關(guān)系建立不等式關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一個(gè)實(shí)軸端點(diǎn)與恰與拋物線y2=-4x的焦點(diǎn)重合,且雙曲線的離心率等于2,則該雙曲線的方程為(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-\frac{y^2}{1}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD是菱形,PD⊥平面ABCD,點(diǎn)D1為棱PD的中點(diǎn),過D1作與平面ABCD平行的平面與棱PA,PB,PC相交于A1,B1,C1,∠BAD=60°.
(1)證明:B1為PB的中點(diǎn);
(2)已知棱錐的高為3,且AB=2,AC、BD的交點(diǎn)為O,連接B1O.求三棱錐B1-ABO外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f是從集合A={1,2}到集合B={0,1,2,3,4}的映射,則滿足f(1)+f(2)=4的所有映射的個(gè)數(shù)為5個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.對于函數(shù)f(x),g(x),記集合Df>g={x|f(x)>g(x)}.
(1)設(shè)f(x)=2|x|,g(x)=x+3,求Df>g;
(2)設(shè)f1(x)=x-1,${f_2}(x)={(\frac{1}{3})^x}+a•{3^x}+1$,h(x)=0,如果${D_{{f_1}>h}}∪{D_{{f_2}>h}}=R$.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線為$y=\sqrt{3}x$,那么雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,球O的表面積為16π,△ABC是邊長為3的正三角形,若SC⊥AB,SA⊥BC,則三棱錐S-ABC的體積的最大值為( 。
A.$\frac{\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{27\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.雙曲線$\frac{{x}^{2}}{3}$-y2=1的焦點(diǎn)F到其漸近線的距離為( 。
A.$\frac{\sqrt{3}}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知拋物線y2=2px(p>0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)有相同的焦點(diǎn)F,A是兩曲線的一個(gè)交點(diǎn),且AF⊥x軸,則雙曲線的離心率是$\sqrt{2}$+1.

查看答案和解析>>

同步練習(xí)冊答案