7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一個實軸端點與恰與拋物線y2=-4x的焦點重合,且雙曲線的離心率等于2,則該雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-\frac{y^2}{1}=1$D.${x^2}-\frac{y^2}{3}=1$

分析 求出拋物線的焦點,可得a=1,運用離心率公式可得c=2,求得b,即可得到所求雙曲線的方程.

解答 解:拋物線y2=-4x的焦點為(-1,0),
由題意可得a=1,
雙曲線的離心率等于2,即有
e=$\frac{c}{a}$=2,解得c=2,
b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{3}$,
即有雙曲線的方程為x2-$\frac{{y}^{2}}{3}$=1.
故選:D.

點評 本題考查雙曲線的方程的求法,注意運用拋物線的焦點和雙曲線的離心率公式,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知拋物線C:y2=2px(p>0)的焦點為F,點A,B在C上,且點F是△AOB的重心,則cos∠AFB為(  )
A.-$\frac{3}{5}$B.-$\frac{7}{8}$C.-$\frac{11}{12}$D.-$\frac{23}{25}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.等差數(shù)列{an}中,a1=4,a3=3,則當n取8或9時,Sn最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{5}{4}$,焦點到漸近線的距離為3,則C的實軸長等于8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求證:AC⊥平面BDE;
(2)求VB-FADE的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.雙曲線x2-$\frac{{y}^{2}}{4}$=1的漸近線方程為( 。
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}x$D.y=±$\frac{1}{4}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.給出下列兩個集合A,B及A→B的對應f:
①A={-1,0,1},B={-1,0,1},f:A中的數(shù)的平方;
②A={0,1},B={-1,0,1},f:A中的數(shù)的開方;
③A=Z,B=Q,f:A中的數(shù)的倒數(shù);
④A=R,B={正實數(shù)},f:A中的數(shù)取絕對值;
⑤A={1,2,3,4},B={2,4,6,8,10},f:n=2m,其中n∈A,m∈B;
其中是A到B的函數(shù)有2個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線C:$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}$=1(b>0)的離心率為2,則C上任意一點到兩條漸近線的距離之積為( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知雙曲線M:x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點分別為F1,F(xiàn)2,過點F1與雙曲線的一條漸近線平行的直線與另一條漸近線交于點P,若點P在以原點為圓心,雙曲線M的虛軸長為半徑的圓內(nèi),則b2的取值范圍是( 。
A.(7+4$\sqrt{3}$,+∞)B.(7-4$\sqrt{3}$,+∞)C.(7-4$\sqrt{3}$,7+4$\sqrt{3}$)D.(0,7-4$\sqrt{3}$)∪(7+4$\sqrt{3}$,+∞)

查看答案和解析>>

同步練習冊答案