4.為了評(píng)價(jià)某個(gè)電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說法正確的是( 。
A.有99%的人認(rèn)為該欄目優(yōu)秀
B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系
C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系
D.沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系

分析 根據(jù)k2的參考表,進(jìn)行判斷即可.

解答 解:

P(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
只有K2>0.708,
所以可以說在犯錯(cuò)率不超過0.4的條件下認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系,即有60%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系,
故沒有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系,
故選D.

點(diǎn)評(píng) 本題的考查點(diǎn)是獨(dú)立性檢驗(yàn)的應(yīng)用,根據(jù)獨(dú)立性檢測考查兩個(gè)變量是否有關(guān)系的方法進(jìn)行判斷,準(zhǔn)確的理解判斷方法及K2的含義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列命題中
①若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
②直線5x-2y+1=0與函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的圖象不相切;
③若z∈C(C為復(fù)數(shù)集),且|z+2-2i|=1,則|z-2-2i|的最小值是3;
④定積分${∫}_{-4}^{0}$$\sqrt{16-{x}^{2}}$dx=4π.
正確的有(  )
A.①④B.③④C.②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)是( 。
A.y=x+x-1B.y=x3+xC.y=2x+log2xD.$y={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-(a+1)x+1(a∈R).
(1)若關(guān)于x的不等式f(x)≥0的解集為R,求實(shí)數(shù)a的取值范圍;
(2)若關(guān)于x的不等式f(x)<0的解集是{x|b<x<2},求a,b的值;
(3)若關(guān)于x的不等式f(x)≤0的解集是 P,集合Q={x|0≤x≤1},若 P∩Q=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2
(1)若點(diǎn)A(0,b)與焦點(diǎn)F1、F2構(gòu)成△AF1F2為等腰直角三角形,求橢圓的離心率.
(2)若橢圓E的離心率為$\frac{1}{2}$,過點(diǎn)P(0,1)的直線與橢圓交于B、C兩點(diǎn),且當(dāng)點(diǎn)B、C關(guān)于y軸對(duì)稱時(shí),|BC|=$\frac{{4\sqrt{6}}}{3}$,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)(1,$\frac{{\sqrt{2}}}{2}$),離心率e=$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓交于M,N兩點(diǎn),且|${\overrightarrow{{F_2}M}$+$\overrightarrow{{F_2}N}}$|=$\frac{{2\sqrt{26}}}{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知橢圓C的中心在原點(diǎn),左焦點(diǎn)F1,右焦點(diǎn)F2均在x軸上,A為橢圓的右頂點(diǎn),B為橢圓短軸的端點(diǎn),P是橢圓上一點(diǎn),且PF1⊥x軸,PF2∥AB,則此橢圓的離心率等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓E:x2+(y-$\frac{1}{2}$)2=$\frac{9}{4}$經(jīng)過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)F1,F(xiàn)2,且與橢圓C在第一象限的交點(diǎn)為A,且F1,E,A三點(diǎn)共線,直線l交橢圓C于M,N兩點(diǎn),且$\overrightarrow{MN}$=λ$\overrightarrow{OA}$(λ≠0)
(1)求橢圓C的方程;
(2)當(dāng)三角形AMN的面積取得最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),$z=\frac{5}{w}+|\overline w-2|$.
(1)求z;
(2)若(1)中的z是關(guān)于x的方程x2-px+q=0的一個(gè)根,求實(shí)數(shù)p,q的值及方程的另一個(gè)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案