分析 (1)利用橢圓的標(biāo)準(zhǔn)方程,求出a,b然后寫出標(biāo)準(zhǔn)方程,求出長軸長與短軸長.
(2)聯(lián)立直線方程與橢圓方程,利用判別式求解m的范圍即可.
解答 解:(1)橢圓經(jīng)過點P(0,1),Q(2,0).所求橢圓是標(biāo)準(zhǔn)方程,
所以a=2,b=1,橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$
橢圓的長軸長4.短軸長 2.
(2)由$\left\{\begin{array}{l}{y=x+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,消去y,得5x2+8mx+4(m2-1)=0,
直線l:y=x+m與該橢圓有公共點時,
則△=64m2-80(m2-1)≥0,得-$\sqrt{5}$≤m≤$\sqrt{5}$.
點評 本題考查直線與橢圓的位置關(guān)系,橢圓的方程的求法,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y+1=0 | B. | x-y-1=0 | C. | x-y-7=0 | D. | x+y-7=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}+\sqrt{2}}}{4}$ | B. | $\frac{{\sqrt{2}-\sqrt{6}}}{4}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $-\frac{{\sqrt{6}+\sqrt{2}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | b>c>a | C. | c>b>a | D. | c>a>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com