18.在等差數(shù)列{an}中,2(a1+a4+a7)+3(a9+a11)=24,則此數(shù)列的前13項之和等于26.

分析 利用等差數(shù)列的性質(zhì)與求和公式即可得出.

解答 解:等差數(shù)列{an}中,2(a1+a4+a7)+3(a9+a11)=24,
∴6a4+6a10=24,
∴2a7=4,即a7=2.
則此數(shù)列的前13項之和S13=$\frac{13({a}_{1}+{a}_{13})}{2}$=13a7=26.
故答案為:26.

點評 本題考查了等差數(shù)列的性質(zhì)與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a=0.7${\;}^{\frac{1}{8}}$,b=0.6${\;}^{-\frac{1}{8}}$,c=log20.5,則a,b,c的大小關系是(  )
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.命題“若m>0,則方程x2+x-m=0有實根”與其逆命題分別是( 。
A.真命題,真命題B.真命題,假命題C.假命題,真命題D.假命題,假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖是某城市100戶居民的月均用電量(單位:度)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖.
(1)求直方圖中x的值及月均用電量的中位數(shù);
(2)從月均用電量在[220,240),[240,260),[260,280),[280,300]的四組用戶中,用分層抽樣的方法抽取11戶居民,再從11戶居民中隨機抽取2戶進行用電分析.用X表示這2戶居民中月均用電量在[220,240)內(nèi)的戶數(shù),求隨機變量X的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某電腦公司有6名產(chǎn)品推銷員,其工作年限與年推銷金額數(shù)據(jù)如表:
推銷員編號12345
工作年限x/年35679
推銷金額y/萬元23345
(1)求年推銷金額y與工作年限x之間的相關系數(shù)(精確到0.01);
(2)求年推銷金額y關于工作年限x的線性回歸方程.
(參考數(shù)據(jù):$\sqrt{1.04}$≈1.02.)
參考公式:線性相關系數(shù)公式:r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$
線性回歸方程系數(shù)公式:$\hat y$=bx+a,其中b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-bx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓經(jīng)過點P(0,1),Q(2,0).
(1)求橢圓的標準方程,并求出橢圓的長軸長、短軸長
(2)當直線l:y=x+m與該橢圓有公共點時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知向量$\vec a$,$\vec b$的夾角為60°,且|${\vec a}$|=2,|${\vec b}$|=1,則|${\vec a-\vec b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在某校開展的“陽光體育”系列活動中,甲、乙兩班之間進行了一次200米跑的團體比賽.每個班各派出5名同學比賽,講每名同學的200米成績記錄以后(單位:秒,且已知每個成績都是整數(shù)),總用時少的班級獲勝,
成績記錄如表所示:
隊員編號12345
甲班成績3134332928
乙班成績273130X31
表格中的x∈[30,40)
(1)若x=36,從甲班的5名同學中任取3名,記這3人中用時少于乙隊平均用時的人數(shù)為隨機變量η,求η的分布列;
(2)若最終乙班獲勝,那么當乙班同學的成績方差最大時,x的取值是多少(直接寫出結(jié)果,不用證明)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知等差數(shù)列{an}的公差d≠0,若a2=5且a1,a3,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=0且對任意的n≥2,均有|bn-bn-1|=2${\;}^{{a}_{n}}$
①寫出b3所有可能的取值;
②若bk=2116,求k的最小值.

查看答案和解析>>

同步練習冊答案