2.某人騎自行車上班,第一條路線較短但擁擠,到達(dá)時(shí)間X(分鐘)服從正態(tài)分布N(5,1);第二條路較長(zhǎng)但不擁擠.X服從正態(tài)分布N(6,0.16),有一天他出發(fā)時(shí)離點(diǎn)名時(shí)間還有7分鐘,問他應(yīng)選哪一條路線?若離點(diǎn)名時(shí)間還有6.5分鐘,問他應(yīng)選哪一條路線(已知Φ(3.9)=1.000,Φ(2)=0.9772,Φ(2.5)=0.9938,Φ(1.5)=0.9332,Φ(1.25)=0.8944,)?

分析 (1)先設(shè)行車時(shí)間為ξ.分別利用所需時(shí)間服從正態(tài)分布計(jì)算出走第一條路線及時(shí)趕到的概率和走第二條路線及時(shí)趕到的概率后,比較大小即可;
(2)根據(jù)題意,分別求出走第一條路線及時(shí)趕到的概率和走第二條路線及時(shí)趕到的概率,即可解決問題.

解答 解:設(shè)行車時(shí)間為ξ.
(1)走第一條路線及時(shí)趕到的概率為p(0<ξ≤7)=Φ($\frac{7-5}{1}$)-Φ($\frac{0-5}{1}$)=Φ(2)-Φ(-5)≈Φ(2)=0.9772
走第二條路線及時(shí)趕到的概率為p(0<ξ≤7)=Φ($\frac{7-6}{0.4}$)-Φ($\frac{0-6}{0.4}$)=Φ(2.5)-Φ(-15)≈Φ(2.5)=0.9938.
因此在這種情況下應(yīng)走第二條路線.
(2)走第一條路線及時(shí)趕到的概率為p(0<ξ≤6.5)=Φ($\frac{6.5-5}{1}$)-Φ($\frac{0-5}{1}$)=Φ(1.5)-Φ(-5)≈Φ(1.5)=Φ(1.5)=0.9332.
走第二條路線及時(shí)趕到的概率為p(0<ξ≤6.5)=Φ($\frac{6.5-6}{0.4}$)-Φ($\frac{0-6}{0.4}$)=Φ(1.25)-Φ(-15)≈Φ(1.25)=0.8944.
因此在這種情況下應(yīng)走第一條路線.

點(diǎn)評(píng) 本題主要考查了正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查了利用概率解決實(shí)際問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下面表示同一集合的是( 。
A.M={(1,2)},N={(2,1)}B.M={1,2},N={(2,1)}
C.M=∅,N={∅}D.M={x︳x2-3x+2=0},N={1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知cos(2π-α)=$\frac{3}{4}$,α∈(-$\frac{π}{2}$,0),則sin2α的值為( 。
A.$\frac{3}{8}$B.$-\frac{3}{8}$C.$\frac{{3\sqrt{7}}}{8}$D.-$\frac{{3\sqrt{7}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=Asin(ωx+φ)+2(A>0,ω>0,0<φ<2π)的圖象如圖所示,則ω=3,φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-y≤1}\\{x+2y≤2}\\{x≥1}\end{array}\right.$,且z=2x-y+a(a為常數(shù))的最大值為2,則z的最小值為(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{7}{6}$D.$\frac{7}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=|$\sqrt{x}$-ax-b|,a,b∈R,若對(duì)任意實(shí)數(shù)a,b,總存在實(shí)數(shù)x0∈[0,4]使得不等式f(x0)≥m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知P(t,t),t∈R,點(diǎn)M是圓O1:x2+(y-1)2=$\frac{1}{4}$上的動(dòng)點(diǎn),點(diǎn)N是圓O2:(x-2)2+y2=$\frac{1}{4}$上的動(dòng)點(diǎn),求PN-PM的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an},a1=26,Sn為它的前n項(xiàng)和,S3=S11,求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}前n項(xiàng)和為Sn,且$\frac{{S}_{2016}}{2016}$=$\frac{{S}_{2015}}{2015}$+1,則數(shù)列{an}的公差為( 。
A.1B.2C.2015D.2016

查看答案和解析>>

同步練習(xí)冊(cè)答案