如圖,在矩形中,點(diǎn)為邊上的點(diǎn),點(diǎn)為邊的中點(diǎn),,現(xiàn)將沿邊折至位置,且平面平面.
(1) 求證:平面平面;
(2) 求二面角的大小.
(1)詳見(jiàn)解析;(2).
解析試題分析:(1) 利用直角三角形,先證明折前有,折后這個(gè)垂直關(guān)系沒(méi)有改變,然后由平面平面的性質(zhì)證明平面,最后由面面垂直的判定定理即可證明平面平面;(2)為方便計(jì)算,不妨設(shè),先以為原點(diǎn),以方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/2/8ltpw1.png" style="vertical-align:middle;" />軸,以方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d7/d/g56jf1.png" style="vertical-align:middle;" />軸,以與平面向上的法向量同方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/8/7c8jn.png" style="vertical-align:middle;" />軸,建立空間直角坐標(biāo)系,寫(xiě)給相應(yīng)點(diǎn)的坐標(biāo),然后分別求出平面和平面的一個(gè)法向量,接著計(jì)算出這兩個(gè)法向量夾角的余弦值,根據(jù)二面角的圖形與計(jì)算出的余弦值,確定二面角的大小即可.
試題解析:(1) 證明:由題可知:折前
,這個(gè)垂直關(guān)系,折后沒(méi)有改變
故折后有
(2)不妨設(shè),以為原點(diǎn),以方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a0/2/8ltpw1.png" style="vertical-align:middle;" />軸,以方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d7/d/g56jf1.png" style="vertical-align:middle;" />軸,以與平面向上的法向量同方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/8/7c8jn.png" style="vertical-align:middle;" />軸,建立空間直角坐標(biāo)系 7分
則
設(shè)平面和平面的法向量分別為,
由及可得到即,不妨取
又由及可得到即
不妨取 9分
11分
綜上所述,二面角大小為 12分.
考點(diǎn):1.線線垂直的證明;2. 線面垂直、面面垂直的判定與性質(zhì);3.空間向量在解決空間角中的運(yùn)用問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,E,F,G,M,N分別是B1C1,A1D1,A1B1,BD,B1C的中點(diǎn),
求證:(1)MN∥平面CDD1C1.
(2)平面EBD∥平面FGA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)判斷并說(shuō)明PA上是否存在點(diǎn)G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知正方體棱長(zhǎng)為2,、、分別是、和的中點(diǎn).
(1)證明:面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正三棱柱ABC—A1B1C1中,.
(1)求直線與平面所成角的正弦值;
(2)在線段上是否存在點(diǎn)?使得二面角的大小為60°,若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)面底面,且△PAD為等腰直角三角形,,E、F分別為PC、BD的中點(diǎn).
(1)求證:EF//平面PAD;
(2)求證:平面平面 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,邊長(zhǎng)為2的菱形中,,點(diǎn)分別是的中點(diǎn),將分別沿折起,使兩點(diǎn)重合于點(diǎn).
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,,,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com