分析 (Ⅰ)由題意可得$\frac{π}{6}$<A<$\frac{π}{3}$,由正弦定理和二倍角公式可得$\frac{c}{a}$=2cosA,再由余弦函數(shù)的單調(diào)性,計(jì)算即可得到所求范圍;
(Ⅱ)由條件可得$\frac{c}{a}$=2cosA=$\frac{3}{2}$,結(jié)合a+c=20,可得a=8,c=12,由余弦定理,可得b=8或10,檢驗(yàn)即可得到b=10.
解答 解:(Ⅰ)0<B=π-3A<$\frac{π}{2}$,即有$\frac{π}{6}$<A<$\frac{π}{3}$,
由正弦定理得$\frac{c}{a}$=$\frac{sinC}{sinA}$=$\frac{sin2A}{sinA}$=2cosA,
由$\frac{1}{2}<$cosA<$\frac{\sqrt{3}}{2}$,即有1<$\frac{c}{a}$<$\sqrt{3}$;
(Ⅱ)由$\frac{c}{a}$=2cosA=$\frac{3}{2}$,即有a+c=a+$\frac{3}{2}$a=20,
解得a=8,c=12,
由余弦定理得a2=b2+c2-2bc•$\frac{3}{4}$,
得b2-18b+80=0,解得b=8或b=10,
又b=8時(shí),a=b,A=B,
由A+B+C=π得4A=π,
即有cosA=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$≠$\frac{3}{4}$舍去,
故b=10.
點(diǎn)評 本題考查正弦定理和余弦定理的運(yùn)用,同時(shí)考查二倍角公式和余弦函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p且q | B. | p或q | C. | 非p | D. | 非p且非q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{32}$+$\frac{y^2}{16}$=1 | B. | $\frac{x^2}{12}$+$\frac{y^2}{8}$=1 | C. | $\frac{x^2}{8}$+$\frac{y^2}{4}$=1 | D. | $\frac{x^2}{12}$+$\frac{y^2}{4}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com