14.顧客請一位工藝師把A,B兩件玉石原料各制成一件工藝品.工藝師帶一位徒弟完成這項(xiàng)任務(wù).每件原料先由徒弟完成粗加工,再由工藝師進(jìn)行精加工完成制作,兩件工藝品都完成后交付顧客.兩件原料每道工序所需時(shí)間(單位:工作日)如下:
工序時(shí)間原料粗加工精加工
原料A915
原料B621
則最短交貨期為( 。﹤(gè)工作日.
A.36B.42C.45D.51

分析 因?yàn)榈谝患M(jìn)行粗加工時(shí),工藝師什么都不能做,所以徒弟先完成原料B所用的總時(shí)間最短,累加后可得答案.

解答 解:第一件進(jìn)行粗加工時(shí),工藝師什么都不能做,
∴徒弟先完成原料B所用的總時(shí)間最短,
此種情況徒弟開始工作的6小時(shí)后,師傅開始工作,
在師傅后面的36小時(shí)的精加工內(nèi),徒弟也同時(shí)完成了原料A的粗加工.
∴前后共計(jì)6+15+21=42小時(shí).
故選:B

點(diǎn)評 本題考查的知識(shí)點(diǎn)是邏輯推理,統(tǒng)籌方法,分析出徒弟先完成原料B所用的總時(shí)間最短,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{lnx}{x}$,有下列四個(gè)命題:
p1:?x0∈R+,?x∈R+,f($\frac{{x}_{0}+x}{2}$)>$\frac{f({x}_{0})+f(x)}{2}$
p2:?x0∈R+,?x∈R+,f($\frac{{x}_{0}+x}{2}$)<$\frac{f({x}_{0})+f(x)}{2}$
p3:?x0∈R+,?x∈R+,f′(x0)<$\frac{f({x}_{0}+x)-f({x}_{0})}{x}$
p4:?x0∈R+,?x∈R+,f′(x0)>$\frac{f({x}_{0}+x)-f({x}_{0})}{x}$
其中的真命題是( 。
A.p1,p2B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)在[-1,t]上的最小值為N(t),最大值為M(t),若存在最小正整數(shù)k,使得M(t)-N(t)≤k(t+1)對任意t∈(-1,b]成立,則稱函數(shù)f(x)為區(qū)間(-1,b]上的“k階δ函數(shù)”.若函數(shù)f(x)=x2為區(qū)間(-1,4]上的“k階δ函數(shù)”,則k的值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2ex+$\frac{1}{x}$,
(1)求f′(x);
(2)求${∫}_{1}^{2}$f(x)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在平面直角坐標(biāo)系xOy中已知圓C:x2+(y-1)2=5,A為圓C與x軸負(fù)半軸的交點(diǎn),過點(diǎn)A作圓C的弦AB,記線段AB的中點(diǎn)為M.若OA=OM,則直線AB的斜率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù),f(x)=xlnx,g(x)=$\frac{1}{3}$ax2-bx其中a,b∈R
(Ⅰ)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)b=-$\frac{2}{3}$a時(shí),若f(x)≤$\frac{3}{2}$g(x-1)對x∈(1,+∞)恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知公差不為0的等差數(shù)列{an}中,a1+a2+a3+a4=20,a1,a2,a4成等比數(shù)列,求集合A={x|x=an,n∈N*且100<x<200}的元素個(gè)數(shù)及所有這些元素的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=ex-ax-b,其中a,b∈R,e=2.71828…為自然對數(shù)的底數(shù).
(I)當(dāng)b=-a時(shí),求f(x)的極小值;
(Ⅱ)當(dāng)f(x+1)+a≥0時(shí),對x∈R恒成立,求ab的最大值;
(Ⅲ)當(dāng)a>0,b=-a時(shí),設(shè)f'(x)為f(x)的導(dǎo)函數(shù),若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2,且x1<x2,求證:f(3lna)>f′($\frac{{2{x_1}{x_2}}}{{{x_1}+{x_2}}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)集合A={x|2x-1≥0,x∈R},B={x||x|<1,x∈R},則A∩B={x|$\frac{1}{2}$≤x<1}.

查看答案和解析>>

同步練習(xí)冊答案