14.將正整數(shù)1,3,5,7,9…排成一個三角形數(shù)陣:

按照以上排列的規(guī)律,第n行(n≥3)的所有數(shù)之和為n3

分析 求出前幾行中每行的所有數(shù)之和,即可得出結(jié)論.

解答 解:由題意,第1行的所有數(shù)之和為1;
第2行的所有數(shù)之和為3+5=23;

第n行(n≥3)的所有數(shù)之和為n3,
故答案為:n3

點評 本題考查歸納推理,考查學生的計算能力,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.登上一個四級臺階,每次可上一個或兩個臺階,可以選擇的方式共有( 。┓N.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)集合U={x|x<3},A={x|x<2},則∁UA=( 。
A.{x|2≤x<3}B.{x|2<x≤3}C.{x|2<x<3}D.{x|x≥2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.化簡求值:
(1)$\root{3}{{a}^{\frac{9}{2}\sqrt{{a}^{-3}}}}$÷$\sqrt{\root{3}{{a}^{-7}•}\root{3}{{a}^{13}}}$
(2)lg52+$\frac{2}{3}lg8+lg5lg20+{(lg2)^2}$
(3)${0.001^{-\frac{1}{3}}}-{(\frac{7}{8})^0}+{16^{\frac{3}{4}}}+{(\sqrt{2}•\root{3}{3})^6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.《中華人民共和國個人所得稅法》規(guī)定,公民全月工資、薪金所得不超過3500元的部分不必納稅,超過3500元的部分為全月應(yīng)納稅所得額.此項稅款按下表分段累計計算:
全月應(yīng)納稅所得額稅率(%)
不超過1500元的部分3
超過1500元至4500元的部分10
超過4500元至9000元的部分20
(1)設(shè)某人月工資、薪金所得為x元,求應(yīng)納稅款Y的函數(shù)表達式?
(2)某人一月份應(yīng)交納此項稅款為303元,那么他當月的工資,薪金所得是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知U=R,集合A={x|x2-2x-3≥0},B={x|-2≤x<2},則∁UA∩B=( 。
A.(-1,2)B.[-2,3)C.[-2,-1]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖所示,由直線x=a,x=a+1(a>0),y=x2及x軸圍成的曲邊梯形的面積介于相應(yīng)小矩形與大矩形的面積之間,即a2<${∫}_{a}^{a+1}$x2dx<(a+1)2.類比之,?n∈N*,$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<A<$\frac{1}{n}$+$\frac{1}{n+1}$+…+$\frac{1}{2n-1}$恒成立,則實數(shù)A=ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知復(fù)數(shù)z1=$\sqrt{3}$-i,z2=1+$\sqrt{3}$i,若z=z1z2,則|z|=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若2kπ+π<θ<2kπ+$\frac{5π}{4}$(k∈Z),則sinθ,cosθ,tanθ的大小關(guān)系是cosθ<sinθ<tanθ.

查看答案和解析>>

同步練習冊答案