分析 (1)①根據(jù)排列數(shù)公式證明即可,②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C${\;}_{2n+1}^{n}$;
(2)①甲獲勝的概率P=p3(6p2-15p+10),
②設(shè)乙每一局獲勝的概率為q,則p+q=1,0<q<$\frac{1}{2}$.記在甲最終獲勝的概率為Pn,根據(jù)超幾何分布得到Pn,利用(1)的結(jié)論計(jì)算Pn-Pn+1<0,問(wèn)題得以證明.
解答 解:(1)①Cnr+Cnr+1=$\frac{n!}{r!(n-r)!}$+$\frac{n!}{(r+1)!(n-r-1)!}$=$\frac{n![(r+1)+(n-r)]}{(r+1)!(n-r)!}$=$\frac{(n+1)!}{(r+1)![(n+1)-(r+1)]!}$=Cn+1r+1;
②由①得C2n+2n+1=C2n+1n+C2n+1n+1=2C${\;}_{2n+1}^{n}$;
(2)①若n=2,甲獲勝的概率P=p3+pC32p2(1-p)+pC42p2(1-p)2=p3(6p2-15p+10),
②證明:設(shè)乙每一局獲勝的概率為q,則p+q=1,0<q<$\frac{1}{2}$.
記在甲最終獲勝的概率為Pn,則Pn=pn+1+pCn+1npnq+pCn+2npnp2+…+pC2nnpnqn=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn),
∴Pn-Pn+1=pn+1(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-pn+2(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1),
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1-q)(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1+Cn+1nq+Cn+2nq2+…+C2nnqn)-(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)+q(1+Cn+2n+1q+Cn+3n+1q2+…+C2n+2n+1qn+1)],
=pn+1[(1-1)+q(Cn+1n-Cn+2n+1+1)+q2(Cn+2n-Cn+3n+1+1)+…+qn(C2nn-C2n+1n+1+C2nn+1)-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1[-qn+1)(C2n+2n+1-C2n+1n+1+qn+2C2n+2n+1],
=pn+1qn+1(qC2n+2n+1-C2n+1n+1)],
=pn+1qn+1(2qC2n+1n-C2n+1n)],
=pn+1qn+1C2n+1n(2q-1)<0,
所以Pn<Pn+1,
即總局?jǐn)?shù)越多,甲獲勝的可能性越大(即甲獲勝的概率越大).
點(diǎn)評(píng) 本題考查了排列數(shù)公式的應(yīng)用,本題的運(yùn)算量很大,需要耐心和認(rèn)真,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
乙隊(duì)勝的概率 | 乙隊(duì)平的概率 | 乙隊(duì)負(fù)的概率 | |
與丙 隊(duì)比賽 | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{2}$ |
與丁隊(duì)比賽 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x≤0,lnx≥x | B. | ?x>0,lnx≥x | C. | ?x≤0,lnx<x | D. | ?x>0,lnx<x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (11+$4\sqrt{2}$)π | B. | (12+4$\sqrt{2}$)π | C. | (13+4$\sqrt{2}$)π | D. | (14+4$\sqrt{2}$)π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com