20.設(shè)$\overrightarrow a,\overrightarrow b,\overrightarrow c$是單位向量,且$\overrightarrow a•\overrightarrow b=0,則({\overrightarrow a+\overrightarrow c})•({\overrightarrow b+\overrightarrow c})$的最大值為$\sqrt{2}+1$.

分析 將所求展開,利用已知三個(gè)向量為單位向量,并且$\overrightarrow{a}•\overrightarrow$=0,得到所求為$\overrightarrow{c}•(\overrightarrow{a}+\overrightarrow)$+1,利用商量下公式求最值.

解答 解:由已知得到$(\overrightarrow{a}+\overrightarrow{c})•(\overrightarrow+\overrightarrow{c})$=$\overrightarrow{a}•\overrightarrow+\overrightarrow{a}•\overrightarrow{c}+\overrightarrow{c}•\overrightarrow+{\overrightarrow{c}}^{2}$=$\overrightarrow{c}•(\overrightarrow{a}+\overrightarrow)$+1;
根據(jù)幾何意義,|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{2}$,設(shè)$\overrightarrow{a}+\overrightarrow$與$\overrightarrow{c}$的夾角為θ,則$\overrightarrow{c}•(\overrightarrow{a}+\overrightarrow)$+1=($\sqrt{2}+1$)cosθ,所以最大值為$\sqrt{2}+1$;
故答案為:$1+\sqrt{2}$.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積公式的運(yùn)用;關(guān)鍵是將所求變形為向量夾角的式子.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,正三棱柱ABC-A1B1C1(底面是正三角形,側(cè)棱垂直底面)的各條棱長(zhǎng)均相等,D為AA1的中點(diǎn).M、N分別是BB1、CC1上的動(dòng)點(diǎn)(含端點(diǎn)),且滿足BM=C1N.當(dāng)M,N運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是( 。
A.平面DMN⊥平面BCC1B1
B.三棱錐A1-DMN的體積為定值
C.△DMN可能為直角三角形
D.平面DMN與平面ABC所成的銳二面角范圍為(0,$\frac{π}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,點(diǎn)E,F(xiàn)分別在正方體ABCD-A1B1C1D1的棱DD1、AB上,下列命題:
①A1C⊥B1E;
②在平面A1B1C1D1內(nèi)總存在于平面B1EF平行的直線;
③△B1EF在側(cè)面BCC1B1上的正投影是面積為定值的三角形;
④當(dāng)E、F為中點(diǎn)時(shí),平面B1EF截該正方體所得的截面圖形是五邊形;
⑤若點(diǎn)P為線段EF的中點(diǎn),則其軌跡為一個(gè)矩形的四周.
其中所有真命題的序號(hào)是②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù) f(x)=lnx-ax(a∈R)有兩個(gè)不相等的零點(diǎn) x1,x2(x1<x2
(I)求a的取值范圍;
(Ⅱ)判斷$\frac{2}{{{x_1}+{x_2}}}$與a的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知B,C兩點(diǎn)在圓O:x2+y2=1上,A(a,0)為x軸上一點(diǎn),且a>l.給出以下命題:
①$\overrightarrow{OA}$•$\overrightarrow{OC}$的最小值為一1;
②△OBC面積的最大值為1;
③若a=$\sqrt{2}$,且直線AB,AC都與圓O相切,則△ABC為正三角形;
④若a=$\sqrt{2}$,且$\overrightarrow{AB}$=λ$\overrightarrow{BC}$(λ>0),則當(dāng)△OBC面積最大時(shí),|AB|=$\frac{\sqrt{6}-\sqrt{2}}{2}$;
⑤若a=$\frac{\sqrt{5}}{2}$,且$\overrightarrow{AB}$=$λ\overrightarrow{BC}$,圓O上的點(diǎn)D滿足$\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OD}$,則直線BC的斜率是$±\frac{1}{2}$.
其中正確的是⑤(寫出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)函數(shù)f(x)=|$\frac{1}{2}$x+1|+|x|(x∈R)的最小值為a.
(Ⅰ)求a;
(Ⅱ)已知兩個(gè)正數(shù)m,n滿足m2+n2=a,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)證明:①C${\;}_{n}^{r}$+C${\;}_{n}^{r+1}$=C${\;}_{n+1}^{r+1}$;②C${\;}_{2n+2}^{n+1}$=2C${\;}_{2n+1}^{n}$(其中n,r∈N*,0≤r≤n-1);
(2)某個(gè)比賽的決賽在甲、乙兩名運(yùn)動(dòng)員之間進(jìn)行,比賽共設(shè)2n+1局,每局比賽甲獲勝的概率均為p(p>$\frac{1}{2}$),首先贏滿n+1局者獲勝(n∈N*).
①若n=2,求甲獲勝的概率;
②證明:總局?jǐn)?shù)越多,甲獲勝的可能性越大(即甲獲勝的概率越大).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>1)
(Ⅰ)判斷函數(shù)f(x)的奇偶性
(Ⅱ)判斷f(x)在(-∞,+∞)上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知m∈R,n∈R,并且m+3n=1,則em+e3n的最小值$2\sqrt{e}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案